pel-functions {lmom} | R Documentation |
Parameter estimation for specific distributions by the method of L-moments
Description
Computes the parameters of a probability distribution
as a function of the -moments.
The following distributions are recognized:
pelexp | exponential | |
pelgam | gamma | |
pelgev | generalized extreme-value | |
pelglo | generalized logistic | |
pelgpa | generalized Pareto | |
pelgno | generalized normal | |
pelgum | Gumbel (extreme-value type I) | |
pelkap | kappa | |
pelln3 | three-parameter lognormal | |
pelnor | normal | |
pelpe3 | Pearson type III | |
pelwak | Wakeby | |
pelwei | Weibull | |
Usage
pelexp(lmom)
pelgam(lmom)
pelgev(lmom)
pelglo(lmom)
pelgno(lmom)
pelgpa(lmom, bound = NULL)
pelgum(lmom)
pelkap(lmom)
pelln3(lmom, bound = NULL)
pelnor(lmom)
pelpe3(lmom)
pelwak(lmom, bound = NULL, verbose = FALSE)
pelwei(lmom, bound = NULL)
Arguments
lmom |
Numeric vector containing the |
bound |
Lower bound of the distribution. If |
verbose |
Logical: whether to print a message when not all parameters of the distribution can be computed. |
Details
Numerical methods and accuracy are as described in
Hosking (1996, pp. 10–11).
Exception:
if pelwak
is unable to fit a Wakeby distribution using all 5 -moments,
it instead fits a generalized Pareto distribution to the first 3
-moments.
(The corresponding routine in the LMOMENTS Fortran package
would attempt to fit a Wakeby distribution with lower bound zero.)
The kappa and Wakeby distributions have 4 and 5 parameters respectively
but cannot attain all possible values of the first 4 or 5 -moments.
Function
pelkap
can fit only kappa distributions with
(the limit is the
relation satisfied by the generalized logistic distribution),
and will give an error if
lmom
does not satisfy this constraint.
Function pelwak
can fit a Wakeby distribution only if
the values lie above a line plotted by
lmrd(distributions="WAK.LB")
,
and if satisfies additional constraints;
in other cases
pelwak
will fit a generalized Pareto distribution
(a special case of the Wakeby distribution) to the first three -moments.
Value
A numeric vector containing the parameters of the distribution.
Author(s)
J. R. M. Hosking jrmhosking@gmail.com
References
Hosking, J. R. M. (1996).
Fortran routines for use with the method of -moments, Version 3.
Research Report RC20525, IBM Research Division, Yorktown Heights, N.Y.
See Also
pelp
for parameter estimation of a general distribution
specified by its cumulative distribution function or quantile function.
lmrexp
, etc., to compute the -moments
of a distribution given its parameters.
For individual distributions, see their cumulative distribution functions:
cdfexp | exponential | |
cdfgam | gamma | |
cdfgev | generalized extreme-value | |
cdfglo | generalized logistic | |
cdfgpa | generalized Pareto | |
cdfgno | generalized normal | |
cdfgum | Gumbel (extreme-value type I) | |
cdfkap | kappa | |
cdfln3 | three-parameter lognormal | |
cdfnor | normal | |
cdfpe3 | Pearson type III | |
cdfwak | Wakeby | |
cdfwei | Weibull | |
Examples
# Sample L-moments of Ozone from the airquality data
data(airquality)
lmom <- samlmu(airquality$Ozone)
# Fit a GEV distribution
pelgev(lmom)