cdfwak {lmom} | R Documentation |
Wakeby distribution
Description
Distribution function and quantile function of the Wakeby distribution.
Usage
cdfwak(x, para = c(0, 1, 0, 0, 0))
quawak(f, para = c(0, 1, 0, 0, 0))
Arguments
x |
Vector of quantiles. |
f |
Vector of probabilities. |
para |
Numeric vector containing the parameters of the distribution,
in the order
|
Details
The Wakeby distribution with
parameters \xi
,
\alpha
,
\beta
,
\gamma
and
\delta
has quantile function
x(F)=\xi+{\alpha\over\beta}\lbrace1-(1-F)^\beta\rbrace-{\gamma\over\delta}\lbrace1-(1-F)^{-\delta}\rbrace.
The parameters are restricted as in Hosking and Wallis (1997, Appendix A.11):
either
\beta+\delta>0
or\beta=\gamma=\delta=0
;if
\alpha=0
then\beta=0
;if
\gamma=0
then\delta=0
;-
\gamma\ge0
; -
\alpha+\gamma\ge0
.
The distribution has a lower bound at \xi
and,
if \delta<0
, an upper bound at
\xi+\alpha/\beta-\gamma/\delta
.
The generalized Pareto distribution is the special case
\alpha=0
or \gamma=0
.
The exponential distribution is the special case
\beta=\gamma=\delta=0
.
The uniform distribution is the special case
\beta=1
, \gamma=\delta=0
.
Value
cdfwak
gives the distribution function;
quawak
gives the quantile function.
Note
The functions expect the distribution parameters in a vector,
rather than as separate arguments as in the standard R
distribution functions pnorm
, qnorm
, etc.
References
Hosking, J. R. M. and Wallis, J. R. (1997). Regional frequency analysis: an approach based on L-moments, Cambridge University Press, Appendix A.11.
See Also
cdfgpa
for the generalized Pareto distribution.
cdfexp
for the exponential distribution.
Examples
# Random sample from the Wakeby distribution
# with parameters xi=0, alpha=30, beta=20, gamma=1, delta=0.3.
quawak(runif(100), c(0,30,20,1,0.3))