cdfkap {lmom} | R Documentation |
Kappa distribution
Description
Distribution function and quantile function of the kappa distribution.
Usage
cdfkap(x, para = c(0, 1, 0, 0))
quakap(f, para = c(0, 1, 0, 0))
Arguments
x |
Vector of quantiles. |
f |
Vector of probabilities. |
para |
Numeric vector containing the parameters of the distribution,
in the order |
Details
The kappa distribution with
location parameter \xi
,
scale parameter \alpha
and
shape parameters k
and h
has quantile function
x(F)=\xi+{\alpha\over k}\biggl\lbrace1-\biggl({1-F^h \over h}\biggr)^k\biggr\rbrace.
Its special cases include the
generalized logistic (h=-1
),
generalized extreme-value (h=0
),
generalized Pareto (h=1
),
logistic (k=0
, h=-1
),
Gumbel (k=0
, h=0
),
exponential (k=0
, h=1
), and
uniform (k=1
, h=1
) distributions.
Value
cdfkap
gives the distribution function;
quakap
gives the quantile function.
Note
The functions expect the distribution parameters in a vector,
rather than as separate arguments as in the standard R
distribution functions pnorm
, qnorm
, etc.
References
Hosking, J. R. M. (1994). The four-parameter kappa distribution. IBM Journal of Research and Development, 38, 251-258.
Hosking, J. R. M., and Wallis, J. R. (1997). Regional frequency analysis: an approach based on L-moments, Cambridge University Press, Appendix A.10.
See Also
cdfglo
for the generalized logistic distribution,
cdfgev
for the generalized extreme-value distribution,
cdfgpa
for the generalized Pareto distribution,
cdfgum
for the Gumbel distribution,
cdfexp
for the exponential distribution.
Examples
# Random sample from the kappa distribution
# with parameters xi=0, alpha=1, k=-0.5, h=0.25.
quakap(runif(100), c(0,1,-0.5,0.25))