ci.boot.lmf {lmf} | R Documentation |
Confidence intervals for class "boot.lmf"
Description
Constructs confidence intervals (CIs) for the bootstrapped parameters in an object of class "boot.lmf".
Usage
ci.boot.lmf(x, clevel = 0.05)
Arguments
x |
an object of class "boot.lmf". |
clevel |
the confidence level required. |
Details
ci.boot.lmf
construct confidence intervals (CIs) from the quantiles of the
bootstrap replicates and uses the function quantile
.
See Engen et al. 2012 for details on the method for estimating and bootstrapping the parameters.
Value
ci.boot.lmf
returns a list containing the following components:
call |
the matched call. |
nboot |
the number of bootstrap replicates generated. |
what |
which set of parameters which has been to bootstrapped. See
|
clevel |
the confidence level specified. |
uage |
the unique age classes in the data set. |
nage |
the number of unique age classes in the data set. |
l |
CI for the projection matrix. |
luv |
CI for |
sigma2.dj |
CI for the demographic variance for each age class. |
sigma2.d |
CI for the total demographic variance |
M |
CI for the estimated temporal covariance matrix. |
aM |
CI for the estimated temporal mean coefficients of selection |
sigma2.e |
CI for the environmental variance |
Anf |
CI for the estimated temporal covariance matrix assuming no fluctuating selection. |
anf |
CI for the estimated temporal mean selection coefficients assuming no fluctuating selection. |
Author(s)
Thomas Kvalnes
References
Engen, S., Saether, B.-E., Kvalnes, T. and Jensen, H. 2012. Estimating fluctuating selection in age-structured populations. Journal of Evolutionary Biology, 25, 1487-1499.
See Also
Examples
#Data set from Engen et al. 2012
data(sparrowdata)
#Fit model
lmf.1 <- lmf(formula = cbind(recruits, survival) ~ weight + tars,
age = age, year = year, data = sparrowdata)
#Bootstrap parameters
b.1 <- boot.lmf(object = lmf.1, nboot = 10, sig.dj = TRUE,
what = "all", asim = "parametric")
#Generate CI
ci.boot.lmf(b.1)