parametric_bootstrap.merMod {lmeresampler} | R Documentation |
Parametric Bootstrap for Nested LMEs
Description
Generate parametric bootstrap replicates of a statistic for a nested linear mixed-effects model.
Usage
## S3 method for class 'merMod'
parametric_bootstrap(model, .f, B, .refit = TRUE)
## S3 method for class 'lme'
parametric_bootstrap(model, .f, B, .refit = TRUE)
parametric_bootstrap(model, .f, B, .refit = TRUE)
Arguments
model |
The model object you wish to bootstrap. |
.f |
A function returning the statistic(s) of interest. |
B |
The number of bootstrap resamples. |
.refit |
a logical value indicating whether the model should be refit to
the bootstrap resample, or if the simulated bootstrap resample should be
returned. Defaults to |
Details
The parametric bootstrap simulates bootstrap samples from the estimated distribution functions. That is, error terms and random effects are simulated from their estimated normal distributions and are combined into bootstrap samples via the fitted model equation.
Value
The returned value is an object of class "lmeresamp".
References
Chambers, R. and Chandra, H. (2013) A random effect block bootstrap for clustered data. Journal of Computational and Graphical Statistics, 22, 452–470.
Van der Leeden, R., Meijer, E. and Busing F. M. (2008) Resampling multilevel models. In J. de Leeuw and E. Meijer, editors, Handbook of Multilevel Analysis, pages 401–433. New York: Springer.
See Also
Examples are given in
bootstrap
-
parametric_bootstrap
,resid_bootstrap
,case_bootstrap
,reb_bootstrap
,wild_bootstrap
for more details on a specific bootstrap. -
bootMer
in the lme4 package for an implementation of (semi-)parametric bootstrap for mixed models.