g_mlm {lmeInfo} | R Documentation |
Calculates adjusted mlm effect size
Description
Estimates a standardized mean difference effect size from a fitted multi-level model, using restricted or full maximum likelihood methods with small-sample correction, as described in Pustejovsky, Hedges, & Shadish (2014).
Usage
g_mlm(
mod,
p_const,
mod_denom = mod,
r_const = NULL,
infotype = "expected",
separate_variances = FALSE,
...
)
Arguments
mod |
Fitted model of class lmeStruct (estimated using
|
p_const |
Vector of constants for calculating numerator of effect size.
Must be the same length as fixed effects in |
mod_denom |
Fitted model of class lmeStruct (estimated using
|
r_const |
Vector of constants for calculating denominator of effect
size. Must be the same length as the number of variance component
parameters in |
infotype |
Type of information matrix. One of |
separate_variances |
Logical indicating whether to incorporate separate
level-1 variance components in the calculation of the effect size and
standard error for models with a 'varIdent()' variance structure. If
|
... |
further arguments. |
Value
A list with the following components
p_beta | Numerator of effect size |
r_theta | Squared denominator of effect size |
delta_AB | Unadjusted (mlm) effect size estimate |
nu | Estimated denominator degrees of freedom |
J_nu
| Biased correction factor for effect size estimate |
kappa
| Scaled standard error of numerator |
g_AB | Corrected effect size estimate |
SE_g_AB | Approximate standard error estimate |
theta | Estimated variance component parameters |
info_inv | Inversed information matrix |
References
Pustejovsky, J. E., Hedges, L. V., & Shadish, W. R. (2014). Design-comparable effect sizes in multiple baseline designs: A general modeling framework. Journal of Educational and Behavioral Statistics, 39(4), 211-227. doi:10.3102/1076998614547577
Examples
library(nlme)
data(Bryant2016, package = "lmeInfo")
Bryant2016_RML1 <- lme(fixed = outcome ~ treatment,
random = ~ 1 | school/case,
correlation = corAR1(0, ~ session | school/case),
data = Bryant2016)
Bryant2016_g1 <- g_mlm(Bryant2016_RML1, p_const = c(0,1), r_const = c(1,1,0,1),
infotype = "expected")
print(Bryant2016_g1)
summary(Bryant2016_g1)
Bryant2016_RML2 <- lme(fixed = outcome ~ treatment,
random = ~ 1 | school/case,
correlation = corAR1(0, ~ session | school/case),
weights = varIdent(form = ~ 1 | treatment),
data = Bryant2016)
Bryant_g <- g_mlm(Bryant2016_RML2, p_const = c(0,1), r_const = c(1,1,0,0,1))
Bryant_g_baseline <- g_mlm(Bryant2016_RML2,
p_const = c(0,1),
r_const = c(1,1,0,1,0),
separate_variances = TRUE)
Bryant_g_treatment <- g_mlm(Bryant2016_RML2,
p_const = c(0,1),
r_const = c(1,1,0,0,1),
separate_variances = TRUE)
print(Bryant_g)
print(Bryant_g_baseline)
print(Bryant_g_treatment)