rePCA {lme4} | R Documentation |
PCA of random-effects covariance matrix
Description
PCA of random-effects variance-covariance estimates
Usage
rePCA(x)
Arguments
x |
a |
Details
Perform a Principal Components Analysis (PCA) of the random-effects variance-covariance estimates from a fitted mixed-effects model. This allows the user to detect and diagnose overfitting problems in the random effects model (see Bates et al. 2015 for details).
Value
a prcomplist
object
Author(s)
Douglas Bates
References
Douglas Bates, Reinhold Kliegl, Shravan Vasishth, and Harald Baayen. Parsimonious Mixed Models. arXiv:1506.04967 [stat], June 2015. arXiv: 1506.04967.
See Also
Examples
fm1 <- lmer(Reaction~Days+(Days|Subject), sleepstudy)
rePCA(fm1)
[Package lme4 version 1.1-35.5 Index]