nloptwrap {lme4} | R Documentation |
Wrappers for additional optimizers
Description
Wrappers to allow use of alternative optimizers, from the NLopt
library (via nloptr) or elsewhere, for the nonlinear optimization stage.
Usage
nloptwrap (par, fn, lower, upper, control = list(), ...)
nlminbwrap(par, fn, lower, upper, control = list(), ...)
Arguments
par |
starting parameter vector |
fn |
objective function |
lower , upper |
numeric vector of lower and upper bounds. |
control |
|
... |
additional arguments to be passed to objective function |
Details
Using alternative optimizers is an important trouble-shooting
tool for mixed models. These wrappers provide convenient access to
the optimizers provided by Steven Johnson's NLopt
library
(via the nloptr R package), and to the nlminb
optimizer from base R. nlminb
is also available via the
optimx package; this wrapper provides access to nlminb()
without the need to install/link the package, and without the additional
post-fitting checks that are implemented by optimx (see examples
below).
One important difference between the nloptr-provided
implementation of BOBYQA and the minqa-provided version
accessible via optimizer="bobyqa"
is that it provides simpler
access to optimization tolerances. bobyqa
provides
only the rhoend
parameter (“[t]he smallest value of the
trust region radius that is allowed”), while nloptr provides a more
standard set of tolerances for relative or absolute change in the
objective function or the parameter values (ftol_rel
,
ftol_abs
, xtol_rel
, xtol_abs
).
The default (empty) control
list corresponds to the following settings:
nlminbwrap
:control
exactly corresponds tonlminb()
's defaults, see there.nloptwrap
:environment(nloptwrap)$defaultControl
contains the defaults, notablyalgorithm = "NLOPT_LN_BOBYQA"
.nloptr::nloptr.print.options()
shows and explains the many possible algorithm and options.
Value
par |
estimated parameters |
fval |
objective function value at minimum |
feval |
number of function evaluations |
conv |
convergence code (0 if no error) |
message |
convergence message |
Author(s)
Gabor Grothendieck (nlminbwrap
)
Examples
library(lme4)
ls.str(environment(nloptwrap)) # 'defaultControl' algorithm "NLOPT_LN_BOBYQA"
## Note that 'optimizer = "nloptwrap"' is now the default for lmer() :
fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy)
## tighten tolerances
fm1B <- update(fm1, control= lmerControl(optCtrl = list(xtol_abs=1e-8, ftol_abs=1e-8)))
## run for longer (no effect in this case)
fm1C <- update(fm1,control = lmerControl(optCtrl = list(maxeval=10000)))
logLik(fm1B) - logLik(fm1) ## small difference in log likelihood
c(logLik(fm1C) - logLik(fm1)) ## no difference in LL
## Nelder-Mead
fm1_nloptr_NM <- update(fm1, control=
lmerControl(optimizer = "nloptwrap",
optCtrl = list(algorithm = "NLOPT_LN_NELDERMEAD")))
## other nlOpt algorithm options include NLOPT_LN_COBYLA, NLOPT_LN_SBPLX, see
if(interactive())
nloptr::nloptr.print.options()
fm1_nlminb <- update(fm1, control=lmerControl(optimizer = "nlminbwrap"))
if (require(optimx)) { ## the 'optimx'-based nlminb :
fm1_nlminb2 <- update(fm1, control=
lmerControl(optimizer = "optimx",
optCtrl = list(method="nlminb", kkt=FALSE)))
cat("Likelihood difference (typically zero): ",
c(logLik(fm1_nlminb) - logLik(fm1_nlminb2)), "\n")
}