lpca {lmap} | R Documentation |
Logistic (Restricted) PCA
Description
This function runs: logistic principal component analysis (if X = NULL) logistic reduced rank regression (if X != NULL)
Usage
lpca(
Y,
X = NULL,
S = 2,
dim.indic = NULL,
eq = FALSE,
lambda = FALSE,
maxiter = 65536,
dcrit = 1e-06
)
Arguments
Y |
An N times R binary matrix . |
X |
An N by P matrix with predictor variables |
S |
Positive number indicating the dimensionality of the solution |
dim.indic |
An R by S matrix indicating which response variable pertains to which dimension |
eq |
Only applicable when dim.indic not NULL; equality restriction on regression weighhts per dimension |
lambda |
if TRUE does lambda scaling (see Understanding Biplots, p24) |
maxiter |
maximum number of iterations |
dcrit |
convergence criterion |
Value
This function returns an object of the class lpca
with components:
call |
Call to the function |
Y |
Matrix Y from input |
Xoriginal |
Matrix X from input |
X |
Scaled X matrix |
mx |
Mean values of X |
sdx |
Standard deviations of X |
ynames |
Variable names of responses |
xnames |
Variable names of predictors |
probabilities |
Estimated values of Y |
m |
main effects |
U |
matrix with coordinates for row-objects |
B |
matrix with regression weight (U = XB) |
V |
matrix with vectors for items/responses |
iter |
number of main iterations from the MM algorithm |
deviance |
value of the deviance at convergence |
npar |
number of estimated parameters |
AIC |
Akaike's Information Criterion |
BIC |
Bayesian Information Criterion |
Examples
## Not run:
data(dataExample_lpca)
Y = as.matrix(dataExample_lpca[, 1:8])
X = as.matrix(dataExample_lpca[, 9:13])
# unsupervised
output = lpca(Y = Y, S = 2)
## End(Not run)