lmdu {lmap} | R Documentation |
Logistic (Restricted) MDU
Description
This function runs: logistic multidimensional unfolding (if X = NULL) logistic restricted multidimensional unfolding (if X != NULL)
Usage
lmdu(
Y,
f = NULL,
X = NULL,
S = 2,
start = "svd",
maxiter = 65536,
dcrit = 1e-06
)
Arguments
Y |
An N times R binary matrix . |
f |
Vector with frequencies of response patterns in Y (only applicable if (X = NULL)) |
X |
An N by P matrix with predictor variables |
S |
Positive number indicating the dimensionality of the solution |
start |
Either user provided starting values (start should be a list with U and V) or a way to compute starting values (choices: random, svd, ca) |
maxiter |
maximum number of iterations |
dcrit |
convergence criterion |
Value
deviance
call |
Call to the function |
Yoriginal |
Matrix Y from input |
Y |
Matrix Y from input |
f |
frequencies of rows of Y |
Xoriginal |
Matrix X from input |
X |
Scaled X matrix |
mx |
Mean values of X |
sdx |
Standard deviations of X |
ynames |
Variable names of responses |
xnames |
Variable names of predictors |
probabilities |
Estimated values of Y |
m |
main effects |
U |
matrix with coordinates for row-objects |
B |
matrix with regression weight (U = XB) |
V |
matrix with vectors for items/responses |
iter |
number of main iterations from the MM algorithm |
deviance |
value of the deviance at convergence |
npar |
number of estimated parameters |
AIC |
Akaike's Information Criterion |
BIC |
Bayesian Information Criterion |
Examples
## Not run:
data(dataExample_lmdu)
Y = as.matrix(dataExample_lmdu[ , 1:8])
X = as.matrix(dataExample_lmdu[ , 9:13])
# unsupervised
output = lmdu(Y = Y, S = 2)
# supervised
output2 = lmdu(Y = Y, X = X, S = 2)
## End(Not run)