esm {lmap} | R Documentation |
Extended Stereotype Model
Description
The function esm performs extended stereotype model analysis for multivariate logistic analysis i.e. a double constrained reduced rank multinomial logistic model
Usage
esm(
X,
Y,
S = 2,
Z = NULL,
W = NULL,
ord.z = 1,
ord.m = R,
scale.x = FALSE,
trace = FALSE,
maxiter = 65536,
dcrit = 1e-06
)
Arguments
X |
An N by P matrix with predictor variables |
Y |
An N times R binary matrix . |
S |
Positive number indicating the dimensionality of teh solution |
Z |
design matrix for response |
W |
design matrix for intercepts |
ord.z |
if Z = NULL, the function creates Z having order ord.z |
ord.m |
if W = NULL, the function creates W having order ord.m |
scale.x |
whether X should be scaled to zero mean and standard deviation one |
trace |
whether progress information should be printed on the screen |
maxiter |
maximum number of iterations |
dcrit |
convergence criterion |
Value
This function returns an object of the class esm
with components:
call |
function call |
Xoriginal |
Matrix X from input |
X |
Scaled X matrix |
mx |
Mean values of X |
sdx |
Standard deviations of X |
Y |
Matrix Y from input |
pnames |
Variable names of profiles |
xnames |
Variable names of predictors |
znames |
Variable names of responses |
Z |
Design matrix Z |
W |
Design matrix W |
G |
Profile indicator matrix G |
m |
main effects |
bm |
regression weights for main effects |
Bx |
regression weights for X |
Bz |
regression weights for Z |
A |
regression weights (Bx Bz') |
U |
matrix with coordinates for row-objects |
V |
matrix with coordinates for column-objects |
Ghat |
Estimated values of G |
deviance |
value of the deviance at convergence |
df |
number of paramters |
AIC |
Akaike's informatoin criterion |
iter |
number of main iterations from the MM algorithm |
svd |
Singular value decomposition in last iteration |
Examples
## Not run:
data(dataExample_lpca)
Y = as.matrix(dataExample_lpca[ , 1:5])
X = as.matrix(dataExample_lpca[ , 9:13])
#unsupervised
output = esm(X, Y, S = 2, ord.z = 2)
## End(Not run)