clmdu {lmap} | R Documentation |
Cumulative Logistic (Restricted) MDU
Description
Cumulative Logistic (Restricted) MDU
Usage
clmdu(
Y,
X = NULL,
S = 2,
trace = FALSE,
start = "svd",
maxiter = 65536,
dcrit = 1e-06
)
Arguments
Y |
An N times R ordinal matrix coded with integers 1,2,.. . |
X |
An N by P matrix with predictor variables |
S |
Positive number indicating the dimensionality of the solution |
trace |
boolean to indicate whether the user wants to see the progress of the function (default=TRUE) |
start |
either starting values (list with (U,V) or (B,V)) or way to compute them (svd, random, ca) |
maxiter |
maximum number of iterations |
dcrit |
convergence criterion |
Value
Y Matrix Y from input
Xoriginal Matrix X from input
X Scaled X matrix
mx Mean values of X
sdx Standard deviations of X
ynames Variable names of responses
xnames Variable names of predictors
probabilities Estimated values of Y
m main effects
U matrix with coordinates for row-objects
B matrix with regression weight (U = XB)
V matrix with vectors for items/responses
iter number of main iterations from the MM algorithm
deviance value of the deviance at convergence
Examples
## Not run:
data(dataExample_clmdu)
Y<-dataExample_clmdu
X<-dataExample_clmdu
output1 = clmdu(Y)
plot(output1)
plot(output1, circles = NULL)
summary(output1)
output2 = clmdu(Y = Y, X = X)
plot(output2, circles = c(1,2))
summary(output2)
## End(Not run)