lmQCM {lmQCM} | R Documentation |
lmQCM: Main Routine for Gene Co-expression Analysis
Description
Author: Zhi Huang
Usage
lmQCM(
data_in,
gamma = 0.55,
t = 1,
lambda = 1,
beta = 0.4,
minClusterSize = 10,
CCmethod = "pearson",
positiveCorrelation = F,
normalization = F
)
Arguments
data_in |
real-valued expression matrix with rownames indicating gene ID or gene symbol |
gamma |
gamma value (default = 0.55) |
t |
t value (default = 1) |
lambda |
lambda value (default = 1) |
beta |
beta value (default = 0.4) |
minClusterSize |
minimum length of cluster to retain (default = 10) |
CCmethod |
Methods for correlation coefficient calculation (default = "pearson"). Users can also pick "spearman". |
positiveCorrelation |
This determines if correlation matrix should convert to positive (with abs function) or not. |
normalization |
Determine if normalization is needed on massive correlation coefficient matrix. |
Value
QCMObject - An S4 Class with lmQCM results
Examples
library(lmQCM)
library(Biobase)
data(sample.ExpressionSet)
data = assayData(sample.ExpressionSet)$exprs
data = fastFilter(data, 0.2, 0.2)
lmQCM(data)
[Package lmQCM version 0.2.4 Index]