llama-package | Leveraging Learning to Automatically Manage Algorithms |
bsFolds | Bootstrapping folds |
classify | Classification model |
classifyPairs | Classification model for pairs of algorithms |
cluster | Cluster model |
contributions | Analysis functions |
cvFolds | Cross-validation folds |
imputeCensored | Impute censored values |
input | Read data |
llama | Leveraging Learning to Automatically Manage Algorithms |
makeRLearner.classif.constant | Helpers |
misclassificationPenalties | Misclassification penalty |
normalize | Normalize features |
parscores | Penalized average runtime score |
perfScatterPlot | Plot convenience functions to visualise selectors |
predictLearner.classif.constant | Helpers |
predTable | Convenience functions |
print.llama.data | Helpers |
print.llama.model | Helpers |
regression | Regression model |
regressionPairs | Regression model for pairs of algorithms |
satsolvers | Example data for Leveraging Learning to Automatically Manage Algorithms |
singleBest | Convenience functions |
singleBestByCount | Convenience functions |
singleBestByPar | Convenience functions |
singleBestBySuccesses | Convenience functions |
successes | Success |
trainLearner.classif.constant | Helpers |
trainTest | Train / test split |
tuneModel | Tune the hyperparameters of the machine learning algorithm underlying a model |
vbs | Convenience functions |