Leveraging Learning to Automatically Manage Algorithms


[Up] [Top]

Documentation for package ‘llama’ version 0.10.1

Help Pages

llama-package Leveraging Learning to Automatically Manage Algorithms
bsFolds Bootstrapping folds
classify Classification model
classifyPairs Classification model for pairs of algorithms
cluster Cluster model
contributions Analysis functions
cvFolds Cross-validation folds
imputeCensored Impute censored values
input Read data
llama Leveraging Learning to Automatically Manage Algorithms
makeRLearner.classif.constant Helpers
misclassificationPenalties Misclassification penalty
normalize Normalize features
parscores Penalized average runtime score
perfScatterPlot Plot convenience functions to visualise selectors
predictLearner.classif.constant Helpers
predTable Convenience functions
print.llama.data Helpers
print.llama.model Helpers
regression Regression model
regressionPairs Regression model for pairs of algorithms
satsolvers Example data for Leveraging Learning to Automatically Manage Algorithms
singleBest Convenience functions
singleBestByCount Convenience functions
singleBestByPar Convenience functions
singleBestBySuccesses Convenience functions
successes Success
trainLearner.classif.constant Helpers
trainTest Train / test split
tuneModel Tune the hyperparameters of the machine learning algorithm underlying a model
vbs Convenience functions