llama-package |
Leveraging Learning to Automatically Manage Algorithms |
bsFolds |
Bootstrapping folds |
classify |
Classification model |
classifyPairs |
Classification model for pairs of algorithms |
cluster |
Cluster model |
contributions |
Analysis functions |
cvFolds |
Cross-validation folds |
imputeCensored |
Impute censored values |
input |
Read data |
llama |
Leveraging Learning to Automatically Manage Algorithms |
makeRLearner.classif.constant |
Helpers |
misclassificationPenalties |
Misclassification penalty |
normalize |
Normalize features |
parscores |
Penalized average runtime score |
perfScatterPlot |
Plot convenience functions to visualise selectors |
predictLearner.classif.constant |
Helpers |
predTable |
Convenience functions |
print.llama.data |
Helpers |
print.llama.model |
Helpers |
regression |
Regression model |
regressionPairs |
Regression model for pairs of algorithms |
satsolvers |
Example data for Leveraging Learning to Automatically Manage Algorithms |
singleBest |
Convenience functions |
singleBestByCount |
Convenience functions |
singleBestByPar |
Convenience functions |
singleBestBySuccesses |
Convenience functions |
successes |
Success |
trainLearner.classif.constant |
Helpers |
trainTest |
Train / test split |
tuneModel |
Tune the hyperparameters of the machine learning algorithm underlying a model |
vbs |
Convenience functions |