press.liu {liureg} | R Documentation |
Predicted Residual Sum of Squares
Description
The press.liu
function computes predicted residual sum of squares (PRESS), computed from by following Ozkale and Kaciranlar (2007) <doi:10.1080/03610920601126522>.
Usage
press(object, predr = FALSE, ...)
## S3 method for class 'liu'
press(object, predr = FALSE, ...)
Arguments
object |
An object of class "liu". |
predr |
If |
... |
Not presently used in this implementation. |
Details
For all of the n
leave-one-out predicted residual sum of squares is calculated by fitting full regression model. PRESS is computed by using, \sum (\hat{e}_{d(i)})^2
or \sum \left[\frac{\hat{e}_{di}}{1-h_{1-ii}}-\frac{e_i}{(1-h_{1-ii})(1-h_{ii})}(h_{1-ii}-\widetilde{H}_{d-ii})\right]^2
, where h_{ii}=X(X'X)^{-1} X'
's ith diagonal element, h_{1-ii}=X(X'X+I)^{-1}X'
's ith diagonal element and \hat{e}_{di}
is the ith residual at specific value of d
.
Value
The press.liu
produces a vector of PRESS for scalar or vector values of biasing parameter d
. If argument predr
is TRUE
then predicted residuals are returned instead of predicted residual sum of squares.
Author(s)
Muhammad Imdad Ullah, Muhammad Aslam
References
Akdeniz, F. and Kaciranlar, S. (1995). On the Almost Unbiased Generalized Liu Estimators and Unbiased Estimation of the Bias and MSE. Communications in Statistics-Theory and Methods, 24, 1789–1897. http://doi.org/10.1080/03610929508831585.
Allen, D. M. (1971). Mean Square Error of Prediction as a Criterion for Selecting Variables. Technometrics, 13, 469-475. http://www.jstor.org/stable/1267161.
Allen, D. M. (1974). The Relationship between Variable Selection and Data Augmentation and Method for Prediction. Technometrics, 16, 125-127. http://www.jstor.org/stable/1267500.
Imdad, M. U. (2017). Addressing Linear Regression Models with Correlated Regressors: Some Package Development in R (Doctoral Thesis, Department of Statistics, Bahauddin Zakariya University, Multan, Pakistan).
Imdadullah, M., Aslam, M., and Altaf, S. (2017). liureg: A comprehensive R Package for the Liu Estimation of Linear Regression Model with Collinear Regressors. The R Journal, 9 (2), 232–247.
Liu, K. (1993). A new Class of Biased Estimate in Linear Regression. Journal of Statistical Planning and Inference, 141, 189–196. http://doi.org/10.1080/03610929308831027.
Ozkale, R. M. and Kaciranlar, S. (2007). A Prediction-Oriented Criterion for Choosing the Biasing Parameter in Liu Estimation. Commincations in Statistics-Theory and Methods, 36(10): 1889–1903. http://doi.org/10.1080/03610920601126522.
See Also
The ridge model fitting liu
, Liu residual residuals
, Liu predicted value predict
Examples
mod<-liu(y~., data = as.data.frame(Hald), d = seq(-5, 5, 0.1))
## PRESS
press(mod)
## Predicted residual
press(mod, predr = TRUE)