pinv {lintools} | R Documentation |
Moore-Penrose pseudoinverse
Description
Compute the pseudoinverse of a matrix using the SVD-construction
Usage
pinv(A, eps = 1e-08)
Arguments
A |
[numeric] matrix |
eps |
[numeric] tolerance for determining zero singular values |
Details
The Moore-Penrose pseudoinverse (sometimes called the generalized inverse) \boldsymbol{A}^+
of a matrix \boldsymbol{A}
has the property that \boldsymbol{A}^+\boldsymbol{AA}^+ = \boldsymbol{A}
. It can be constructed as follows.
Compute the singular value decomposition
\boldsymbol{A} = \boldsymbol{UDV}^T
Replace diagonal elements in
\boldsymbol{D}
of which the absolute values are larger than some limiteps
with their reciprocal valuesCompute
\boldsymbol{A}^+ = \boldsymbol{UDV}^T
References
S Lipshutz and M Lipson (2009) Linear Algebra. In: Schuam's outlines. McGraw-Hill
Examples
A <- matrix(c(
1, 1, -1, 2,
2, 2, -1, 3,
-1, -1, 2, -3
),byrow=TRUE,nrow=3)
# multiply by 55 to retrieve whole numbers
pinv(A) * 55
[Package lintools version 0.1.7 Index]