updated_model {lineartestr} | R Documentation |
Constructs a new model with noised residuals: y_new = y_fitted + residuals*noise
Description
Constructs a new model with noised residuals: y_new = y_fitted + residuals*noise
Usage
updated_model(model, fitting_data, distribution = "rnorm")
Arguments
model |
An existing fit from a model function such as 'lm', 'lfe', 'Arima' and others compatible with 'update'. |
fitting_data |
Data used to adjust a linear model. |
distribution |
Type of noise added to residuals, ej "rnorm" or "rrademacher". |
Value
Constructed linear model.
Examples
x <- 1:100
y <- 2*x + rnorm(100)
model <- lm(y~x-1)
fitting_data <- model.frame(model)
updated_model(model, fitting_data)
updated_model(model, fitting_data, distribution = "rnorm")
updated_model(model, fitting_data, distribution = "rmammen_point")
updated_model(model, fitting_data, distribution = "rmammen_cont")
updated_model(model, fitting_data, distribution = "rrademacher")
x_arma <- rnorm(100)
arma_model <- forecast::Arima(x_arma, c(1, 0, 1))
fitting_data_arma <- model.frame(arma_model)
updated_model(arma_model, fitting_data_arma)
[Package lineartestr version 1.0.0 Index]