lsei {limSolve} | R Documentation |
Least Squares with Equalities and Inequalities
Description
Solves an lsei inverse problem (Least Squares with Equality and Inequality Constraints)
\min(||Ax-b||^2)
subject to
Ex=f
Gx>=h
Uses either subroutine lsei (FORTRAN) from the LINPACK package, or
solve.QP
from R-package quadprog
.
In case the equality constraints Ex=f
cannot be satisfied, a
generalized inverse solution residual vector length is obtained for f-Ex
.
This is the minimal length possible for ||f-Ex||^2
.
Usage
lsei (A = NULL, B = NULL, E = NULL, F = NULL, G = NULL, H = NULL,
Wx = NULL, Wa = NULL, type = 1, tol = sqrt(.Machine$double.eps),
tolrank = NULL, fulloutput = FALSE, verbose = TRUE,
lower = NULL, upper = NULL)
Arguments
A |
numeric matrix containing the coefficients of the quadratic
function to be minimised, |
B |
numeric vector containing the right-hand side of the quadratic function to be minimised. |
E |
numeric matrix containing the coefficients of the equality
constraints, |
F |
numeric vector containing the right-hand side of the equality constraints. |
G |
numeric matrix containing the coefficients of the inequality
constraints, |
H |
numeric vector containing the right-hand side of the inequality constraints. |
Wx |
numeric vector with weighting coefficients of unknowns (length = number of unknowns). |
Wa |
numeric vector with weighting coefficients of the quadratic function (Ax-B) to be minimised (length = number of number of rows of A). |
type |
integer code determining algorithm to use 1= |
tol |
tolerance (for singular value decomposition, equality and inequality constraints). |
tolrank |
only used if |
fulloutput |
if |
verbose |
logical to print warnings and messages. |
upper , lower |
vector containing upper and lower bounds on the unknowns. If one value, it is assumed to apply to all unknowns. If a vector, it should have a length equal to the number of unknowns; this vector can contain NA for unbounded variables. The upper and lower bounds are added to the inequality conditions G*x>=H. |
Value
a list containing:
X |
vector containing the solution of the least squares problem. |
residualNorm |
scalar, the sum of absolute values of residuals of equalities and violated inequalities. |
solutionNorm |
scalar, the value of the minimised quadratic function
at the solution, i.e. the value of |
IsError |
logical, |
type |
the string "lsei", such that how the solution was obtained can be traced. |
covar |
covariance matrix of the solution; only returned if
|
RankEq |
rank of the equality constraint matrix.; only returned if
|
RankApp |
rank of the reduced least squares problem (approximate
equations); only returned if |
Note
See comments in the original code for more details; these comments are included in the ‘docs’ subroutine of the package.
Author(s)
Karline Soetaert <karline.soetaert@nioz.nl>
References
K. H. Haskell and R. J. Hanson, An algorithm for linear least squares problems with equality and nonnegativity constraints, Report SAND77-0552, Sandia Laboratories, June 1978.
K. H. Haskell and R. J. Hanson, Selected algorithms for the linearly constrained least squares problem - a users guide, Report SAND78-1290, Sandia Laboratories,August 1979.
K. H. Haskell and R. J. Hanson, An algorithm for linear least squares problems with equality and nonnegativity constraints, Mathematical Programming 21 (1981), pp. 98-118.
R. J. Hanson and K. H. Haskell, Two algorithms for the linearly constrained least squares problem, ACM Transactions on Mathematical Software, September 1982.
Berwin A. Turlach R and Andreas Weingessel (2007). quadprog: Functions to solve Quadratic Programming Problems. R package version 1.4-11. S original by Berwin A. Turlach R port by Andreas Weingessel.
See Also
solve.QR
the original function from package quadprog
.
Examples
# ------------------------------------------------------------------------------
# example 1: polynomial fitting
# ------------------------------------------------------------------------------
x <- 1:5
y <- c(9, 8, 6, 7, 5)
plot(x, y, main = "Polynomial fitting, using lsei", cex = 1.5,
pch = 16, ylim = c(4, 10))
# 1-st order
A <- cbind(rep(1, 5), x)
B <- y
cf <- lsei(A, B)$X
abline(coef = cf)
# 2-nd order
A <- cbind(A, x^2)
cf <- lsei(A, B)$X
curve(cf[1] + cf[2]*x + cf[3]*x^2, add = TRUE, lty = 2)
# 3-rd order
A <- cbind(A, x^3)
cf <- lsei(A, B)$X
curve(cf[1] + cf[2]*x + cf[3]*x^2 + cf[4]*x^3, add = TRUE, lty = 3)
# 4-th order
A <- cbind(A, x^4)
cf <- lsei(A, B)$X
curve(cf[1] + cf[2]*x + cf[3]*x^2 + cf[4]*x^3 + cf[5]*x^4,
add = TRUE, lty = 4)
legend("bottomleft", c("1st-order", "2nd-order","3rd-order","4th-order"),
lty = 1:4)
# ------------------------------------------------------------------------------
# example 2: equalities, approximate equalities and inequalities
# ------------------------------------------------------------------------------
A <- matrix(nrow = 4, ncol = 3,
data = c(3, 1, 2, 0, 2, 0, 0, 1, 1, 0, 2, 0))
B <- c(2, 1, 8, 3)
E <- c(0, 1, 0)
F <- 3
G <- matrix(nrow = 2, ncol = 3, byrow = TRUE,
data = c(-1, 2, 0, 1, 0, -1))
H <- c(-3, 2)
lsei(E = E, F = F, A = A, B = B, G = G, H = H)
# ------------------------------------------------------------------------------
# example 3: bounds added
# ------------------------------------------------------------------------------
lsei(E = E, F = F, A = A, B = B, G = G, H = H,
lower = c(2, NA, 0))
lsei(E = E, F = F, A = A, B = B, G = G, H = H,
upper = 2)