lilikoi.machine_learning {lilikoi} | R Documentation |
A machine learning Function
Description
This function for classification using 8 different machine learning algorithms and it plots the ROC curves and the AUC, SEN, and specificty
Usage
lilikoi.machine_learning(
MLmatrix = PDSmatrix,
measurementLabels = Label,
significantPathways = selected_Pathways_Weka,
trainportion = 0.8,
cvnum = 10,
dlround = 50,
nrun = 10,
Rpart = TRUE,
LDA = TRUE,
SVM = TRUE,
RF = TRUE,
GBM = TRUE,
PAM = TRUE,
LOG = TRUE,
DL = TRUE
)
Arguments
MLmatrix |
selected pathway deregulation score or metabolites expression matrix |
measurementLabels |
measurement label for samples |
significantPathways |
selected pathway names |
trainportion |
train percentage of the total sample size |
cvnum |
number of folds |
dlround |
epoch number for the deep learning method |
nrun |
denotes the total number of runs of each method to get their averaged performance metrics |
Rpart |
TRUE if run Rpart method |
LDA |
TRUE if run LDA method |
SVM |
TRUE if run SVM method |
RF |
TRUE if run random forest method |
GBM |
TRUE if run GBM method |
PAM |
TRUE if run PAM method |
LOG |
TRUE if run LOG method |
DL |
TRUE if run deep learning method |
Value
Evaluation results and plots of all 8 machine learning algorithms, along with variable importance plots.
Examples
dt = lilikoi.Loaddata(file=system.file("extdata","plasma_breast_cancer.csv", package = "lilikoi"))
Metadata <- dt$Metadata
# lilikoi.machine_learning(MLmatrix = Metadata, measurementLabels = Metadata$Label,
# significantPathways = 0,
# trainportion = 0.8, cvnum = 10, dlround=50,Rpart=TRUE,
# LDA=FALSE,SVM=FALSE,RF=FALSE,GBM=FALSE,PAM=FALSE,LOG=FALSE,DL=FALSE)
[Package lilikoi version 2.1.1 Index]