lilikoi.KEGGplot {lilikoi} | R Documentation |
lilikoi.KEGGplot
Description
Visualizes selected pathways based on their metabolites expression data.
Usage
lilikoi.KEGGplot(
metamat,
sampleinfo,
grouporder,
pathid = "00250",
specie = "hsa",
filesuffix = "GSE16873",
Metabolite_pathway_table = Metabolite_pathway_table
)
Arguments
metamat |
metabolite expression data matrix |
sampleinfo |
is a vector of sample group, with element names as sample IDs. |
grouporder |
grouporder is a vector with 2 elements, the first element is the reference group name, like 'Normal', the second one is the experimental group name like 'Cancer'. |
pathid |
character variable, Pathway ID, usually 5 digits. |
specie |
character, scientific name of the targeted species. |
filesuffix |
output file suffix |
Metabolite_pathway_table |
Metabolites mapping table |
Value
Pathview visualization output
Examples
dt = lilikoi.Loaddata(file=system.file("extdata","plasma_breast_cancer.csv", package = "lilikoi"))
Metadata <- dt$Metadata
dataSet <- dt$dataSet
# convertResults=lilikoi.MetaTOpathway('name')
# Metabolite_pathway_table = convertResults$table
# data_dir=system.file("extdata", "plasma_breast_cancer.csv", package = "lilikoi")
# plasma_data <- read.csv(data_dir, check.names=FALSE, row.names=1, stringsAsFactors = FALSE)
# sampleinfo <- plasma_data$Label
# names(sampleinfo) <- row.names(plasma_data)
# metamat <- t(t(plasma_data[-1]))
# metamat <- log2(metamat)
# grouporder <- c('Normal', 'Cancer')
# make sure install pathview package first before running the following code.
# library(pathview)
# data("bods", package = "pathview")
# options(bitmapType='cairo')
#lilikoi.KEGGplot(metamat = metamat, sampleinfo = sampleinfo, grouporder = grouporder,
#pathid = '00250', specie = 'hsa',filesuffix = 'GSE16873',
#Metabolite_pathway_table = Metabolite_pathway_table)
[Package lilikoi version 2.1.1 Index]