clouds_metrics {lidaRtRee} | R Documentation |
Computes metrics on list of point clouds
Description
Computes metrics for a list of LAS
objects (should be
normalized point clouds). Calls the function cloud_metrics
on each element and then arranges the results in a data.frame.
Usage
clouds_metrics(
llasn,
func = ~lidR::stdmetrics(X, Y, Z, Intensity, ReturnNumber, Classification, dz = 1)
)
Arguments
llasn |
list of |
func |
function. function applied on each element to compute metrics,
default function is |
Value
A data frame with metrics in columns corresponding to LAS objects of the list (lines)
See Also
cloud_metrics
, stdmetrics
,
aba_metrics
, pixel_metrics
Examples
# load LAS file
LASfile <- system.file("extdata", "las_chablais3.laz", package="lidaRtRee")
las_chablais3 <- lidR::readLAS(LASfile)
# set projection
lidR::projection(las_chablais3) <- 2154
# extract four point clouds from LAS object
llas <- list()
llas[["A"]] <- lidR::clip_circle(las_chablais3, 974350, 6581680, 10)
llas[["B"]] <- lidR::clip_circle(las_chablais3, 974390, 6581680, 10)
llas[["C"]] <- lidR::clip_circle(las_chablais3, 974350, 6581640, 10)
# normalize point clouds
llas <- lapply(llas, function(x) {
lidR::normalize_height(x, lidR::tin())
})
# compute metrics
clouds_metrics(llas)
# compute metrics with user-defined function
# mean and standard deviation of first return points above 10 m
user_func <- function(z, rn, hmin = 10) {
# first return above hmin subset
dummy <- which(z >= hmin & rn == 1)
return(list(
mean.z = mean(z[dummy]),
sd.z = stats::sd(z[z > hmin])
))
}
clouds_metrics(llas, func = ~ user_func(Z, ReturnNumber, 10))
[Package lidaRtRee version 4.0.5 Index]