thetaEst {lgcp} | R Documentation |
thetaEst function
Description
A tool to visually estimate the temporal correlation parameter theta; note that sigma and phi must have first been estiamted.
Usage
thetaEst(
xyt,
spatial.intensity = NULL,
temporal.intensity = NULL,
sigma,
phi,
theta.range = c(0, 10),
N = 100,
spatial.covmodel = "exponential",
covpars = c()
)
Arguments
xyt |
object of class stppp |
spatial.intensity |
A spatial at risk object OR a bivariate density estimate of lambda, an object of class im (produced from density.ppp for example), |
temporal.intensity |
either an object of class temporalAtRisk, or one that can be coerced into that form. If NULL (default), this is estimated from the data, seee ?muEst |
sigma |
estimate of parameter sigma |
phi |
estimate of parameter phi |
theta.range |
range of theta values to consider |
N |
number of integration points in computation of C(v,beta) (see Brix and Diggle 2003, corrigendum to Brix and Diggle 2001) |
spatial.covmodel |
spatial covariance model |
covpars |
additional covariance parameters |
Value
An r panel tool for visual estimation of temporal parameter theta NOTE if lambdaEst has been invoked to estimate lambda, then the returned density should be passed to thetaEst as the argument spatial.intensity
References
Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle (2013). Journal of Statistical Software, 52(4), 1-40. URL http://www.jstatsoft.org/v52/i04/
Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.
Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.
See Also
ginhomAverage, KinhomAverage, spatialparsEst, lambdaEst, muEst