spatialparsEst {lgcp} | R Documentation |
spatialparsEst function
Description
Having estimated either the pair correlation or K functions using respectively ginhomAverage or KinhomAverage, the spatial parameters sigma and phi can be estimated. This function provides a visual tool for this estimation procedure.
Usage
spatialparsEst(
gk,
sigma.range,
phi.range,
spatial.covmodel,
covpars = c(),
guess = FALSE
)
Arguments
gk |
an R object; output from the function KinhomAverage or ginhomAverage |
sigma.range |
range of sigma values to consider |
phi.range |
range of phi values to consider |
spatial.covmodel |
correlation type see ?CovarianceFct |
covpars |
vector of additional parameters for certain classes of covariance function (eg Matern), these must be supplied in the order given in ?CovarianceFct |
guess |
logical. Perform an initial guess at paramters? Alternative (the default) sets initial values in the middle of sigma.range and phi.range. NOTE: automatic parameter estimation can be can be unreliable. |
Details
To get a good choice of parameters, it is likely that the routine will have to be called several times in order to refine the choice of sigma.range and phi.range.
Value
rpanel function to help choose sigma nad phi by eye
References
Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle (2013). Journal of Statistical Software, 52(4), 1-40. URL http://www.jstatsoft.org/v52/i04/
Baddeley AJ, Moller J, Waagepetersen R (2000). Non-and semi-parametric estimation of interaction in inhomogeneous point patterns. Statistica Neerlandica, 54, 329-350.
Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.
Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.
See Also
ginhomAverage, KinhomAverage, thetaEst, lambdaEst, muEst