coef.mlgarch {lgarch} | R Documentation |
Extraction methods for 'mlgarch' objects
Description
Extraction methods for objects of class 'mlgarch' (i.e. the result of estimating a multivariate CCC-log-GARCH model)
Usage
## S3 method for class 'mlgarch'
coef(object, varma = FALSE, ...)
## S3 method for class 'mlgarch'
fitted(object, varma = FALSE, verbose = FALSE, ...)
## S3 method for class 'mlgarch'
logLik(object, varma = FALSE, ...)
## S3 method for class 'mlgarch'
print(x, varma = FALSE, ...)
## S3 method for class 'mlgarch'
residuals(object, varma = FALSE, ...)
## S3 method for class 'mlgarch'
summary(object, ...)
## S3 method for class 'mlgarch'
vcov(object, varma = FALSE, ...)
Arguments
object |
an object of class 'mlgarch' |
x |
an object of class 'mlgarch' |
verbose |
logical. If FALSE (default), then only basic information is returned |
varma |
logical. If FALSE (default), then information relating to the multivariate CCC-log-GARCH model is returned. If TRUE, then information relating to the VARMA representation is returned |
... |
additional arguments |
Details
Empty
Value
coef: |
A numeric vector containing the parameter estimates |
fitted: |
A |
logLik: |
The value of the log-likelihood (contributions at zeros excluded) at the maximum |
print: |
Prints the most important parts of the estimation results |
residuals: |
A |
summary: |
A print of the items in the |
vcov: |
The variance-covariance matrix |
Author(s)
Genaro Sucarrat, http://www.sucarrat.net/
See Also
Examples
##simulate 1000 observations from 2-dimensional model w/default parameter values:
set.seed(123)
y <- mlgarchSim(1000)
##estimate a 2-dimensional ccc-log-garch(1,1):
mymod <- mlgarch(y)
##print results:
print(mymod)
##extract ccc-log-garch coefficients:
coef(mymod)
##extract Gaussian log-likelihood (zeros excluded) of the ccc-log-garch model:
logLik(mymod)
##extract Gaussian log-likelihood (zeros excluded) of the varma representation:
logLik(mymod, varma=TRUE)
##extract variance-covariance matrix:
vcov(mymod)
##extract and plot the fitted conditional standard deviations:
sdhat <- fitted(mymod)
plot(sdhat)
##extract and plot standardised residuals:
zhat <- residuals(mymod)
plot(zhat)