coef.lgarch {lgarch} | R Documentation |
Extraction methods for 'lgarch' objects
Description
Extraction methods for objects of class 'lgarch' (i.e. the result of estimating a log-GARCH model)
Usage
## S3 method for class 'lgarch'
coef(object, arma = FALSE, ...)
## S3 method for class 'lgarch'
fitted(object, verbose = FALSE, ...)
## S3 method for class 'lgarch'
logLik(object, arma = FALSE, ...)
## S3 method for class 'lgarch'
print(x, arma = FALSE, ...)
## informal method for class 'lgarch'
rss(object, ...)
## S3 method for class 'lgarch'
residuals(object, arma = FALSE, ...)
## S3 method for class 'lgarch'
summary(object, ...)
## S3 method for class 'lgarch'
vcov(object, arma = FALSE, ...)
Arguments
object |
an object of class 'lgarch' |
x |
an object of class 'lgarch' |
verbose |
logical. If FALSE (default), then only basic information is returned |
arma |
logical. If FALSE (default), then information relating to the log-garch model is returned. If TRUE, then information relating to the ARMA representation is returned |
... |
additional arguments |
Details
Note: The rss function is not a formal S3 method.
Value
coef: |
A numeric vector containing the parameter estimates |
fitted: |
A |
logLik: |
The value of the log-likelihood (contributions at zeros excluded) at the maximum |
print: |
Prints the most important parts of the estimation results |
residuals: |
A |
rss: |
A numeric; the Residual Sum of Squares of the ARMA representation |
summary: |
A print of the items in the |
vcov: |
The variance-covariance matrix |
Author(s)
Genaro Sucarrat, http://www.sucarrat.net/
See Also
Examples
##simulate 500 observations w/default parameter values:
set.seed(123)
y <- lgarchSim(500)
##estimate a log-garch(1,1):
mymod <- lgarch(y)
##print results:
print(mymod)
##extract coefficients:
coef(mymod)
##extract Gaussian log-likelihood (zeros excluded) of the log-garch model:
logLik(mymod)
##extract the Residual Sum of Squares of the ARMA representation:
rss(mymod)
##extract log-likelihood (zeros excluded) of the ARMA representation:
logLik(mymod, arma=TRUE)
##extract variance-covariance matrix:
vcov(mymod)
##extract and plot the fitted conditional standard deviation:
sdhat <- fitted(mymod)
plot(sdhat)
##extract and plot standardised residuals:
zhat <- residuals(mymod)
plot(zhat)
##extract and plot all the fitted series:
myhat <- fitted(mymod, verbose=TRUE)
plot(myhat)