| normalexpgamma {lestat} | R Documentation |
A Normal-ExpGamma Distribution
Description
Creates an object representing a Normal-ExpGamma distribution. If (x,y) has a Normal-ExpGamma
distribution, then the marginal distribution of y is an ExpGamma distribution, and the conditional
distribution of x given y is normal.
Usage
normalexpgamma(mu, kappa, alpha, beta)
Arguments
mu |
The |
kappa |
The |
alpha |
The |
beta |
The |
Details
If (x,y) has a Normal-ExpGamma distribution with parameters \mu, \kappa,
\alpha, and \beta, then the marginal distribution of y has an ExpGamma
distribution with parameters \alpha, \beta, and -2, and conditionally on y,
x has a normal distribution with expectation \mu and logged standard deviation
\kappa + y. The probability density is proportional to
f(x,y)=\exp(-(2\alpha + 1)y - e^{-2y}(\beta + e^{-2\kappa}(x-\mu)^2/2))
Value
A Normal-ExpGamma probability distribution.
Author(s)
Petter Mostad <mostad@chalmers.se>
See Also
gamma, normal, expgamma, normalgamma,
mnormal, mnormalgamma, mnormalexpgamma
Examples
plot(normalexpgamma(3,4,5,6))