| mnormalgamma {lestat} | R Documentation |
A Multivariate Normal-Gamma Distribution
Description
Creates an object representing a multivariate Normal-Gamma distribution.
If (x,y) has a multivariate Normal-Gamma
distribution, then the marginal distribution of y is an Gamma distribution, and the conditional
distribution of x given y is multivariate normal.
Usage
mnormalgamma(mu=c(0,0), P, alpha, beta)
Arguments
mu |
The |
P |
The |
alpha |
The |
beta |
The |
Details
If (x,y) has a multivariate Normal-Gamma distribution with parameters \mu, P,
\alpha, and \beta, then the marginal distribution of y has a Gamma
distribution with parameters \alpha, \beta, and conditionally on y,
x has a multivariate normal distribution with expectation \mu and
precision matrix yP. The probability density is proportional to
f(x,y)=y^{\alpha+k/2-1}\exp(-y(\beta + (x-\mu)^tP(x-\mu)/2))
where k is the dimension.
Value
A multivariate Normal-Gamma probability distribution.
Author(s)
Petter Mostad <mostad@chalmers.se>
See Also
gamma,normal,expgamma,
normalgamma, normalexpgamma,
mnormal,mnormalexpgamma
Examples
plot(mnormalgamma(alpha=3, beta=3))