leastsquares {lestat} | R Documentation |
Find the Least Squares Solution in a Linear Model
Description
Given a vector of data and a design matrix, the least squares estimates for a linear model is computed.
Usage
leastsquares(data, design)
Arguments
data |
A data vector. |
design |
A design matrix. The number of rows must be equal to the length of the data vector. |
Details
The fitted values represent the expected values all but the last variables in the posterior for the linear model.
Value
A vector of values of length equal to the number of columns in the design matrix.
Author(s)
Petter Mostad <mostad@chalmers.se>
See Also
linearmodel
, fittedvalues
,
linearpredict
Examples
xdata <- simulate(uniformdistribution(), 14)
ydata <- xdata + 4 + simulate(normal(), 14)*0.1
plot(xdata,ydata)
design <- cbind(1, xdata)
leastsquares(ydata, design)
[Package lestat version 1.9 Index]