LESSRegressor {less} | R Documentation |
LESSRegressor
Description
Regressor for Learning with Subset Stacking (LESS)
Value
R6 class of LESSRegressor
Super classes
less::BaseEstimator
-> less::SklearnEstimator
-> less::LESSBase
-> LESSRegressor
Methods
Public methods
Inherited methods
less::BaseEstimator$get_all_fields()
less::BaseEstimator$get_attributes()
less::SklearnEstimator$get_type()
less::LESSBase$get_d_normalize()
less::LESSBase$get_frac()
less::LESSBase$get_isFitted()
less::LESSBase$get_n_neighbors()
less::LESSBase$get_n_replications()
less::LESSBase$get_n_subsets()
less::LESSBase$get_random_state()
less::LESSBase$get_replications()
less::LESSBase$get_scaling()
less::LESSBase$get_val_size()
less::LESSBase$set_random_state()
Method new()
Creates a new instance of R6 Class of LESSRegressor
Usage
LESSRegressor$new( frac = NULL, n_neighbors = NULL, n_subsets = NULL, n_replications = 20, d_normalize = TRUE, val_size = NULL, random_state = NULL, tree_method = function(X) KDTree$new(X), cluster_method = NULL, local_estimator = LinearRegression$new(), global_estimator = DecisionTreeRegressor$new(), distance_function = NULL, scaling = TRUE, warnings = TRUE )
Arguments
frac
fraction of total samples used for the number of neighbors (default is 0.05)
n_neighbors
number of neighbors (default is NULL)
n_subsets
number of subsets (default is NULL)
n_replications
number of replications (default is 20)
d_normalize
distance normalization (default is TRUE)
val_size
percentage of samples used for validation (default is NULL - no validation)
random_state
initialization of the random seed (default is NULL)
tree_method
method used for constructing the nearest neighbor tree, e.g., less::KDTree (default)
cluster_method
method used for clustering the subsets, e.g., less::KMeans (default is NULL)
local_estimator
estimator for the local models (default is less::LinearRegression)
global_estimator
estimator for the global model (default is less::DecisionTreeRegressor)
distance_function
distance function evaluating the distance from a subset to a sample, e.g., df(subset, sample) which returns a vector of distances (default is RBF(subset, sample, 1.0/n_subsets^2))
scaling
flag to normalize the input data (default is TRUE)
warnings
flag to turn on (TRUE) or off (FALSE) the warnings (default is TRUE)
Examples
lessRegressor <- LESSRegressor$new() lessRegressor <- LESSRegressor$new(val_size = 0.3) lessRegressor <- LESSRegressor$new(cluster_method = less::KMeans$new()) lessRegressor <- LESSRegressor$new(val_size = 0.3, cluster_method = less::KMeans$new())
Method fit()
Dummy fit function that calls the proper method according to validation and clustering parameters Options are:
Default fitting (no validation set, no clustering)
Fitting with validation set (no clustering)
Fitting with clustering (no) validation set)
Fitting with validation set and clustering
Usage
LESSRegressor$fit(X, y)
Arguments
X
2D matrix or dataframe that includes predictors
y
1D vector or (n,1) dimensional matrix/dataframe that includes response variables
Returns
Fitted R6 Class of LESSRegressor
Examples
data(abalone) split_list <- train_test_split(abalone[1:100,], test_size = 0.3) X_train <- split_list[[1]] X_test <- split_list[[2]] y_train <- split_list[[3]] y_test <- split_list[[4]] lessRegressor <- LESSRegressor$new() lessRegressor$fit(X_train, y_train)
Method predict()
Predictions are evaluated for the test samples in X0
Usage
LESSRegressor$predict(X0)
Arguments
X0
2D matrix or dataframe that includes predictors
Returns
Predicted values of the given predictors
Examples
preds <- lessRegressor$predict(X_test) print(head(matrix(c(y_test, preds), ncol = 2, dimnames = (list(NULL, c("True", "Prediction"))))))
Method get_estimator_type()
Auxiliary function returning the estimator type e.g 'regressor', 'classifier'
Usage
LESSRegressor$get_estimator_type()
Examples
lessRegressor$get_estimator_type()
Method clone()
The objects of this class are cloneable with this method.
Usage
LESSRegressor$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
See Also
Examples
## ------------------------------------------------
## Method `LESSRegressor$new`
## ------------------------------------------------
lessRegressor <- LESSRegressor$new()
lessRegressor <- LESSRegressor$new(val_size = 0.3)
lessRegressor <- LESSRegressor$new(cluster_method = less::KMeans$new())
lessRegressor <- LESSRegressor$new(val_size = 0.3, cluster_method = less::KMeans$new())
## ------------------------------------------------
## Method `LESSRegressor$fit`
## ------------------------------------------------
data(abalone)
split_list <- train_test_split(abalone[1:100,], test_size = 0.3)
X_train <- split_list[[1]]
X_test <- split_list[[2]]
y_train <- split_list[[3]]
y_test <- split_list[[4]]
lessRegressor <- LESSRegressor$new()
lessRegressor$fit(X_train, y_train)
## ------------------------------------------------
## Method `LESSRegressor$predict`
## ------------------------------------------------
preds <- lessRegressor$predict(X_test)
print(head(matrix(c(y_test, preds), ncol = 2, dimnames = (list(NULL, c("True", "Prediction"))))))
## ------------------------------------------------
## Method `LESSRegressor$get_estimator_type`
## ------------------------------------------------
lessRegressor$get_estimator_type()