LESSBinaryClassifier {less} | R Documentation |
LESSBinaryClassifier
Description
Auxiliary binary classifier for Learning with Subset Stacking (LESS)
Value
R6 class of LESSBinaryClassifier
Super classes
less::BaseEstimator
-> less::SklearnEstimator
-> less::LESSBase
-> LESSBinaryClassifier
Methods
Public methods
Inherited methods
less::BaseEstimator$get_all_fields()
less::BaseEstimator$get_attributes()
less::SklearnEstimator$get_type()
less::SklearnEstimator$predict()
less::LESSBase$get_d_normalize()
less::LESSBase$get_frac()
less::LESSBase$get_isFitted()
less::LESSBase$get_n_neighbors()
less::LESSBase$get_n_replications()
less::LESSBase$get_n_subsets()
less::LESSBase$get_random_state()
less::LESSBase$get_replications()
less::LESSBase$get_scaling()
less::LESSBase$get_val_size()
Method new()
Creates a new instance of R6 Class of LESSBinaryClassifier
Usage
LESSBinaryClassifier$new( frac = NULL, n_neighbors = NULL, n_subsets = NULL, n_replications = 20, d_normalize = TRUE, val_size = NULL, random_state = NULL, tree_method = function(X) KDTree$new(X), cluster_method = NULL, local_estimator = LinearRegression$new(), global_estimator = DecisionTreeClassifier$new(), distance_function = NULL, scaling = TRUE, warnings = TRUE )
Arguments
frac
fraction of total samples used for the number of neighbors (default is 0.05)
n_neighbors
number of neighbors (default is NULL)
n_subsets
number of subsets (default is NULL)
n_replications
number of replications (default is 20)
d_normalize
distance normalization (default is TRUE)
val_size
percentage of samples used for validation (default is NULL - no validation)
random_state
initialization of the random seed (default is NULL)
tree_method
method used for constructing the nearest neighbor tree, e.g., less::KDTree (default)
cluster_method
method used for clustering the subsets, e.g., less::KMeans (default is NULL)
local_estimator
estimator for the local models (default is less::LinearRegression)
global_estimator
estimator for the global model (default is less::DecisionTreeRegressor)
distance_function
distance function evaluating the distance from a subset to a sample, e.g., df(subset, sample) which returns a vector of distances (default is RBF(subset, sample, 1.0/n_subsets^2))
scaling
flag to normalize the input data (default is TRUE)
warnings
flag to turn on (TRUE) or off (FALSE) the warnings (default is TRUE)
Method fit()
Dummy fit function that calls the proper method according to validation and clustering parameters Options are:
Default fitting (no validation set, no clustering)
Fitting with validation set (no clustering)
Fitting with clustering (no) validation set)
Fitting with validation set and clustering
Usage
LESSBinaryClassifier$fit(X, y)
Arguments
X
2D matrix or dataframe that includes predictors
y
1D vector or (n,1) dimensional matrix/dataframe that includes response variables
Returns
Fitted R6 Class of LESSBinaryClassifier
Method predict_proba()
Prediction probabilities are evaluated for the test samples in X0
Usage
LESSBinaryClassifier$predict_proba(X0)
Arguments
X0
2D matrix or dataframe that includes predictors
Method get_global_estimator()
Auxiliary function returning the global_estimator
Usage
LESSBinaryClassifier$get_global_estimator()
Method set_random_state()
Auxiliary function that sets random state attribute of the self class
Usage
LESSBinaryClassifier$set_random_state(random_state)
Arguments
random_state
seed number to be set as random state
Returns
self
Method clone()
The objects of this class are cloneable with this method.
Usage
LESSBinaryClassifier$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.