KNeighborsClassifier {less} | R Documentation |
KNeighborsClassifier
Description
Wrapper R6 Class of caret::knnreg function that can be used for LESSRegressor and LESSClassifier
Value
R6 Class of KNeighborsClassifier
Super classes
less::BaseEstimator
-> less::SklearnEstimator
-> KNeighborsClassifier
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of R6 Class of KNeighborsClassifier
Usage
KNeighborsClassifier$new(k = 5)
Arguments
k
Number of neighbors considered (defaults to 5).
Examples
knc <- KNeighborsClassifier$new() knc <- KNeighborsClassifier$new(k = 5)
Method fit()
Fit the k-nearest neighbors regressor from the training set (X, y).
Usage
KNeighborsClassifier$fit(X, y)
Arguments
X
2D matrix or dataframe that includes predictors
y
1D vector or (n,1) dimensional matrix/dataframe that includes labels
Returns
Fitted R6 Class of KNeighborsClassifier
Examples
data(iris) split_list <- train_test_split(iris, test_size = 0.3) X_train <- split_list[[1]] X_test <- split_list[[2]] y_train <- split_list[[3]] y_test <- split_list[[4]] knc <- KNeighborsClassifier$new() knc$fit(X_train, y_train)
Method predict()
Predict regression value for X0.
Usage
KNeighborsClassifier$predict(X0)
Arguments
X0
2D matrix or dataframe that includes predictors
Returns
Factor of the predict classes.
Examples
knc <- KNeighborsClassifier$new() knc$fit(X_train, y_train) preds <- knc$predict(X_test) knc <- KNeighborsClassifier$new() preds <- knc$fit(X_train, y_train)$predict(X_test) preds <- KNeighborsClassifier$new()$fit(X_train, y_train)$predict(X_test) print(caret::confusionMatrix(data=factor(preds), reference = factor(y_test)))
Method get_estimator_type()
Auxiliary function returning the estimator type e.g 'regressor', 'classifier'
Usage
KNeighborsClassifier$get_estimator_type()
Examples
knc$get_estimator_type()
Method clone()
The objects of this class are cloneable with this method.
Usage
KNeighborsClassifier$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
See Also
Examples
## ------------------------------------------------
## Method `KNeighborsClassifier$new`
## ------------------------------------------------
knc <- KNeighborsClassifier$new()
knc <- KNeighborsClassifier$new(k = 5)
## ------------------------------------------------
## Method `KNeighborsClassifier$fit`
## ------------------------------------------------
data(iris)
split_list <- train_test_split(iris, test_size = 0.3)
X_train <- split_list[[1]]
X_test <- split_list[[2]]
y_train <- split_list[[3]]
y_test <- split_list[[4]]
knc <- KNeighborsClassifier$new()
knc$fit(X_train, y_train)
## ------------------------------------------------
## Method `KNeighborsClassifier$predict`
## ------------------------------------------------
knc <- KNeighborsClassifier$new()
knc$fit(X_train, y_train)
preds <- knc$predict(X_test)
knc <- KNeighborsClassifier$new()
preds <- knc$fit(X_train, y_train)$predict(X_test)
preds <- KNeighborsClassifier$new()$fit(X_train, y_train)$predict(X_test)
print(caret::confusionMatrix(data=factor(preds), reference = factor(y_test)))
## ------------------------------------------------
## Method `KNeighborsClassifier$get_estimator_type`
## ------------------------------------------------
knc$get_estimator_type()