| KDTree {less} | R Documentation |
KDTree - Nearest Neighbor Search
Description
Wrapper R6 Class of RANN::nn2 function that can be used for LESSRegressor and LESSClassifier
Value
R6 Class of KDTree
Methods
Public methods
Method new()
Creates a new instance of R6 Class of KDTree
Usage
KDTree$new(X = NULL)
Arguments
XAn M x d data.frame or matrix, where each of the M rows is a point or a (column) vector (where d=1).
Examples
data(abalone) kdt <- KDTree$new(abalone[1:100,])
Method query()
Finds the p number of near neighbours for each point in an input/output dataset. The advantage of the kd-tree is that it runs in O(M log M) time.
Usage
KDTree$query(query_X = private$X, k = 1)
Arguments
query_XA set of N x d points that will be queried against
X. d, the number of columns, must be the same asX. If missing, defaults toX.kThe maximum number of nearest neighbours to compute (deafults to 1).
Returns
A list of length 2 with elements:
nn.idx | A N x k integer matrix returning the near neighbour indices. |
nn.dists | A N x k matrix returning the near neighbour Euclidean distances |
Examples
res <- kdt$query(abalone[1:3,], k=2) print(res)
Method clone()
The objects of this class are cloneable with this method.
Usage
KDTree$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
See Also
Examples
## ------------------------------------------------
## Method `KDTree$new`
## ------------------------------------------------
data(abalone)
kdt <- KDTree$new(abalone[1:100,])
## ------------------------------------------------
## Method `KDTree$query`
## ------------------------------------------------
res <- kdt$query(abalone[1:3,], k=2)
print(res)
[Package less version 0.1.0 Index]