LDDMM {lddmm} | R Documentation |
Drift Diffusion Model Fit
Description
Main function for the Gibbs sampler for the drift-diffusion model. Note that
priors are noninformative and calibrated so that, for the most stable
performance, the response times (variable r_time
in the data
dataframe)
should lie between 0 and 10.
Usage
LDDMM(
data,
hypers,
cluster = TRUE,
boundaries = "flexible",
Niter = 5000,
burnin = 2000,
thin = 5
)
Arguments
data |
dataframe with the following columns:
|
hypers |
hyperparameters of the MCMC: list containing "s_sigma_mu" and "s_sigma_b", which are the smoothness parameters for drifts and boundaries, respectively) |
cluster |
should clustering be used? (default = TRUE) |
boundaries |
whether to fit the unrestricted model (flexible), assume constant boundaries over time (constant) or fix the boundaries to the same level across predictors (fixed) |
Niter |
total number of iterations |
burnin |
burnin of the chain |
thin |
thinning factor |
Value
List with the following MCMC posterior samples:
post_mean_delta: posterior samples for the population offset parameters
post_mean_mu: posterior samples for the population drift parameters
post_mean_b: posterior samples for the population boundary parameters
post_ind_delta: posterior samples for the individual offset parameters
post_ind_mu: posterior samples for the individual drift parameters
post_ind_b: posterior samples for the individual boundary parameters
sigma2_mu_us: posterior samples for the random effects drift smoothness parameters
sigma2_mu_ua: posterior samples for the random effects drift variance parameters
sigma2_b_us: posterior samples for the random effects boundary smoothness parameters
sigma2_b_ua: posterior samples for the random effects boundary variance parameters
sigma2_1_mu: posterior samples for the drift smoothness parameters
sigma2_1_b: posterior samples for the boundary smoothness parameters
pred_ans: predicted population-level categories
pred_time: predicted population-level response times
pred_ans_ind: predicted individual-level categories
pred_time_ind: predicted individual-level response times