| dendTopics {ldaPrototype} | R Documentation |
Topic Dendrogram
Description
Builds a dendrogram for topics based on their pairwise similarities using the
cluster algorithm hclust.
Usage
dendTopics(sims, ind, method = "complete")
## S3 method for class 'TopicDendrogram'
plot(x, pruning, pruning.par, ...)
Arguments
sims |
[ |
ind |
[ |
method |
[ |
x |
an R object. |
pruning |
[ |
pruning.par |
[ |
... |
additional arguments. |
Details
The label“s colors are determined based on their Run belonging using
rainbow_hcl by default. Colors can be manipulated
using labels_colors. Analogously, the labels
themself can be manipulated using labels.
For both the function order.dendrogram is useful.
The resulting dendrogram can be plotted. In addition,
it is possible to mark a pruning state in the plot, either by color or by
separator lines (or both) setting pruning.par. For the default values
of pruning.par call the corresponding function on any
PruningSCLOP object.
Value
[dendrogram] TopicDendrogram object
(and dendrogram object) of all considered topics.
See Also
Other plot functions:
pruneSCLOP()
Other TopicSimilarity functions:
cosineTopics(),
getSimilarity(),
jaccardTopics(),
jsTopics(),
rboTopics()
Other workflow functions:
LDARep(),
SCLOP(),
getPrototype(),
jaccardTopics(),
mergeTopics()
Examples
res = LDARep(docs = reuters_docs, vocab = reuters_vocab, n = 4, K = 10, num.iterations = 30)
topics = mergeTopics(res, vocab = reuters_vocab)
jacc = jaccardTopics(topics, atLeast = 2)
sim = getSimilarity(jacc)
dend = dendTopics(jacc)
dend2 = dendTopics(sim)
plot(dend)
plot(dendTopics(jacc, ind = c("Rep2", "Rep3")))
pruned = pruneSCLOP(dend)
plot(dend, pruning = pruned)
plot(dend, pruning = pruned, pruning.par = list(type = "color"))
plot(dend, pruning = pruned, pruning.par = list(type = "both", lty = 1, lwd = 2, col = "red"))
dend2 = dendTopics(jacc, ind = c("Rep2", "Rep3"))
plot(dend2, pruning = pruneSCLOP(dend2), pruning.par = list(lwd = 2, col = "darkgrey"))