dendTopics {ldaPrototype} | R Documentation |
Topic Dendrogram
Description
Builds a dendrogram for topics based on their pairwise similarities using the
cluster algorithm hclust
.
Usage
dendTopics(sims, ind, method = "complete")
## S3 method for class 'TopicDendrogram'
plot(x, pruning, pruning.par, ...)
Arguments
sims |
[ |
ind |
[ |
method |
[ |
x |
an R object. |
pruning |
[ |
pruning.par |
[ |
... |
additional arguments. |
Details
The labelĀ“s colors are determined based on their Run belonging using
rainbow_hcl
by default. Colors can be manipulated
using labels_colors
. Analogously, the labels
themself can be manipulated using labels
.
For both the function order.dendrogram
is useful.
The resulting dendrogram
can be plotted. In addition,
it is possible to mark a pruning state in the plot, either by color or by
separator lines (or both) setting pruning.par
. For the default values
of pruning.par
call the corresponding function on any
PruningSCLOP
object.
Value
[dendrogram
] TopicDendrogram
object
(and dendrogram
object) of all considered topics.
See Also
Other plot functions:
pruneSCLOP()
Other TopicSimilarity functions:
cosineTopics()
,
getSimilarity()
,
jaccardTopics()
,
jsTopics()
,
rboTopics()
Other workflow functions:
LDARep()
,
SCLOP()
,
getPrototype()
,
jaccardTopics()
,
mergeTopics()
Examples
res = LDARep(docs = reuters_docs, vocab = reuters_vocab, n = 4, K = 10, num.iterations = 30)
topics = mergeTopics(res, vocab = reuters_vocab)
jacc = jaccardTopics(topics, atLeast = 2)
sim = getSimilarity(jacc)
dend = dendTopics(jacc)
dend2 = dendTopics(sim)
plot(dend)
plot(dendTopics(jacc, ind = c("Rep2", "Rep3")))
pruned = pruneSCLOP(dend)
plot(dend, pruning = pruned)
plot(dend, pruning = pruned, pruning.par = list(type = "color"))
plot(dend, pruning = pruned, pruning.par = list(type = "both", lty = 1, lwd = 2, col = "red"))
dend2 = dendTopics(jacc, ind = c("Rep2", "Rep3"))
plot(dend2, pruning = pruneSCLOP(dend2), pruning.par = list(lwd = 2, col = "darkgrey"))