theta.bci {lcopula} | R Documentation |
Parametric bootstrap confidence interval for the parameter theta
for Liouville copula
Description
The parametric bootstrap provides confidence intervals by repeatedly sampling datasets from the postulated
Liouvilla copula model. If and the model is either
gumbel
or clayton
, the value of
Kendall's is calculated from the sample, and the confidence interval or the quantiles correspond
to the inverse
for the bootstrap quantile values of
(using monotonicity).
Usage
theta.bci(
B = 1999,
family,
alphavec,
n,
theta.hat,
quant = c(0.025, 0.975),
silent = FALSE
)
Arguments
B |
number of bootstrap replicates |
family |
family of the Liouville copula. Either |
alphavec |
vector of Dirichlet allocations (must be a vector of integers) |
n |
sample size |
theta.hat |
estimate of theta |
quant |
if the vector of probability is specified, the function will return the corresponding bootstrap quantiles |
silent |
boolean for output progress. Default is |
Details
Install package wdm
to speed up calculation of Kendall's tau.
Since no closed-form formulas exist for the other models or in higher dimension, the method is extremely slow since it relies on maximization of a new sample from the model and look up the corresponding parameters.
Value
a list with a 95
and the bootstrap values of Kendall's tau in boot_tau
if and the model is either
gumbel
or clayton
.
Otherwise, the list contains boot_theta
.
Examples
## Not run:
theta.bci(B=99, family="gumbel", alphavec=c(2,3), n=100, theta.hat=2)
theta.bci(B=19, family="AMH", alphavec=c(1,2), n=100, theta.hat=0.5, quant=c(0.05,0.95))
theta.bci(B=19, family="frank", alphavec=c(1,2,3), n=100, theta.hat=0.5, quant=c(0.05,0.95))
## End(Not run)