relrisk {lbreg} | R Documentation |
Regression Adjusted Relative Risks
Description
This function calculates the relative risks RR adjusted for covariates (acting on a previous log-binomial regression fit) and confidence intervals (by default 95 percent) for the estimated RR. The confidence interval is calculated from the log(RR) and backtransformed.
Usage
relrisk(object, alpha = 0.05, dispersion = FALSE)
Arguments
object |
object of class 'lbreg'. |
alpha |
1 - desired confidence level. |
dispersion |
logical. |
Value
value |
table with estimated relative risks, lower and upper bounds of condifidence intervals. |
Author(s)
Bernardo B. Andrade
References
Andrade, BB; Andrade JML (2018) Some results for Maximum Likelihood Estimation of Adjusted Relative Risks. Communications in Statistics - Theory and Methods.
See Also
Examples
require(lbreg)
# ungrouped data
# data preparation
data(PCS)
w <- PCS
w <- w[,-1]
w$race <- factor(w$race)
w$dpros <- factor(w$dpros)
w$dcaps <- factor(w$dcaps)
# log-binomial regression
fm <- lbreg(tumor ~ ., data=w)
# relative risks
relrisk(fm)
relrisk(fm, alpha=.10)
# grouped data
require(lbreg)
data(Caesarian)
m1 <- lbreg( cbind(n1, n0) ~ RISK + NPLAN + ANTIB, data=Caesarian)
relrisk(m1)
relrisk(m1, dispersion=TRUE)
[Package lbreg version 1.3 Index]