| mev {lax} | R Documentation |
Loglikelihood adjustment for mev fits
Description
S3 alogLik method to perform loglikelihood adjustment for fitted
extreme value model objects returned from the functions
fit.gev, fit.gpd, and
fit.pp and fit.rlarg in the
mev package.
Usage
## S3 method for class 'mev_gev'
alogLik(x, cluster = NULL, use_vcov = TRUE, ...)
## S3 method for class 'mev_pp'
alogLik(x, cluster = NULL, use_vcov = TRUE, ...)
## S3 method for class 'mev_gpd'
alogLik(x, cluster = NULL, use_vcov = TRUE, ...)
## S3 method for class 'mev_egp'
alogLik(x, cluster = NULL, use_vcov = TRUE, ...)
## S3 method for class 'mev_rlarg'
alogLik(x, cluster = NULL, use_vcov = TRUE, ...)
Arguments
x |
A fitted model object with certain associated S3 methods. See Details. |
cluster |
A vector or factor indicating from which cluster the
respective log-likelihood contributions from If |
use_vcov |
A logical scalar. Should we use the |
... |
Further arguments to be passed to the functions in the
sandwich package |
Details
See alogLik for details.
If x was returned from fit.pp then the data
xdat supplied to fit.pp must contain all
the data, both threshold exceedances and non-exceedances.
Value
An object inheriting from class "chandwich". See
adjust_loglik.
class(x) is a vector of length 5. The first 3 components are
c("lax", "chandwich", "mev").
The 4th component depends on which model was fitted.
"gev" if fit.gev was used;
"gpd" if fit.gpd was used;
"pp" fit.pp was used;
"egp" fit.egp was used;
"rlarg" fit.rlarg was used;
The 5th component is "stat" (for stationary).
References
Chandler, R. E. and Bate, S. (2007). Inference for clustered data using the independence loglikelihood. Biometrika, 94(1), 167-183. doi:10.1093/biomet/asm015
Suveges, M. and Davison, A. C. (2010) Model misspecification in peaks over threshold analysis, The Annals of Applied Statistics, 4(1), 203-221. doi:10.1214/09-AOAS292
Zeileis (2006) Object-Oriented Computation and Sandwich Estimators. Journal of Statistical Software, 16, 1-16. doi:10.18637/jss.v016.i09
See Also
alogLik: loglikelihood adjustment for model fits.
Examples
# We need the mev package
got_mev <- requireNamespace("mev", quietly = TRUE)
if (got_mev) {
library(mev)
# An example from the mev::gev.fit documentation
gev_mev <- fit.gev(revdbayes::portpirie)
adj_gev_mev <- alogLik(gev_mev)
summary(adj_gev_mev)
# Use simulated data
set.seed(1112019)
x <- revdbayes::rgp(365 * 10, loc = 0, scale = 1, shape = 0.1)
pfit <- fit.pp(x, threshold = 1, npp = 365)
adj_pfit <- alogLik(pfit)
summary(adj_pfit)
# An example from the mev::fit.gpd documentation
gpd_mev <- fit.gpd(eskrain, threshold = 35, method = 'Grimshaw')
adj_gpd_mev <- alogLik(gpd_mev)
summary(adj_gpd_mev)
# An example from the mev::fit.egp documentation
# (model = "egp1" and model = "egp3" also work)
xdat <- evd::rgpd(n = 100, loc = 0, scale = 1, shape = 0.5)
fitted <- fit.egp(xdat = xdat, thresh = 1, model = "egp2", show = FALSE)
adj_fitted <- alogLik(fitted)
summary(adj_fitted)
# An example from the mev::fit.rlarg documentation
set.seed(31102019)
xdat <- rrlarg(n = 10, loc = 0, scale = 1, shape = 0.1, r = 4)
fitr <- fit.rlarg(xdat)
adj_fitr <- alogLik(fitr)
summary(adj_fitr)
}