ismev_refits {lax} | R Documentation |
Maximum-likelihood (Re-)Fitting using the ismev package
Description
These are a slightly modified versions of the gev.fit
,
gpd.fit
, pp.fit
and
rlarg.fit
functions in the ismev
package.
The modification is to add to the returned object regression design matrices
for the parameters of the model. That is,
xdat, ydat, mulink, siglink, shlink
and matrices
mumat, sigmat, shmat
for the location, scale and shape parameters
gev.fit
, pp.fit
and
rlarg.fit
, and xdat
,
ydat, siglink, shlink
and matrices sigmat, shmat
for the
scale and shape parameters for gpd.fit
.
Usage
gev_refit(
xdat,
ydat = NULL,
mul = NULL,
sigl = NULL,
shl = NULL,
mulink = identity,
siglink = identity,
shlink = identity,
muinit = NULL,
siginit = NULL,
shinit = NULL,
show = TRUE,
method = "Nelder-Mead",
maxit = 10000,
...
)
gpd_refit(
xdat,
threshold,
npy = 365,
ydat = NULL,
sigl = NULL,
shl = NULL,
siglink = identity,
shlink = identity,
siginit = NULL,
shinit = NULL,
show = TRUE,
method = "Nelder-Mead",
maxit = 10000,
...
)
pp_refit(
xdat,
threshold,
npy = 365,
ydat = NULL,
mul = NULL,
sigl = NULL,
shl = NULL,
mulink = identity,
siglink = identity,
shlink = identity,
muinit = NULL,
siginit = NULL,
shinit = NULL,
show = TRUE,
method = "Nelder-Mead",
maxit = 10000,
...
)
rlarg_refit(
xdat,
r = dim(xdat)[2],
ydat = NULL,
mul = NULL,
sigl = NULL,
shl = NULL,
mulink = identity,
siglink = identity,
shlink = identity,
muinit = NULL,
siginit = NULL,
shinit = NULL,
show = TRUE,
method = "Nelder-Mead",
maxit = 10000,
...
)
Arguments
xdat |
A numeric vector of data to be fitted. |
ydat |
A matrix of covariates for generalized linear modelling
of the parameters (or |
mul , sigl , shl |
Numeric vectors of integers, giving the columns
of |
mulink , siglink , shlink |
Inverse link functions for generalized linear modelling of the location, scale and shape parameters repectively. |
muinit , siginit , shinit |
numeric of length equal to total number of parameters used to model the location, scale or shape parameter(s), resp. See Details section for default (NULL) initial values. |
show |
Logical; if |
method |
The optimization method (see |
maxit |
The maximum number of iterations. |
... |
Other control parameters for the optimization. These
are passed to components of the |
threshold |
The threshold; a single number or a numeric
vector of the same length as |
npy |
The number of observations per year/block. |
r |
The largest |
References
Heffernan, J. E. and Stephenson, A. G. (2018). ismev: An Introduction to Statistical Modeling of Extreme Values. R package version 1.42. https://CRAN.R-project.org/package=ismev.
Examples
# We need the ismev package
got_ismev <- requireNamespace("ismev", quietly = TRUE)
if (got_ismev) {
library(ismev)
fit1 <- gev.fit(revdbayes::portpirie, show = FALSE)
ls(fit1)
fit2 <- gev_refit(revdbayes::portpirie, show = FALSE)
ls(fit2)
data(rain)
fit1 <- gpd.fit(rain, 10)
ls(fit1)
fit2 <- gpd_refit(rain, 10)
ls(fit2)
fit1 <- pp.fit(rain, 10, show = FALSE)
ls(fit1)
fit2 <- pp_refit(rain, 10, show = FALSE)
ls(fit2)
data(venice)
fit1 <- rlarg.fit(venice[, -1], muinit = 120.54, siginit = 12.78,
shinit = -0.1129, show = FALSE)
ls(fit1)
fit2 <- rlarg_refit(venice[, -1], muinit = 120.54, siginit = 12.78,
shinit = -0.1129, show = FALSE)
ls(fit2)
}