robust.mmm.test {lawstat} | R Documentation |
Robust Mudholkar–McDermott–Mudholkar Test for Ordered Variances
Description
A test for a monotonic trend in variances (Mudholkar et al. 1995).
The test statistic is based on
a combination of the finite intersection approach and the two-sample t
-test
using Miller's transformation. By default, NA
s are omitted.
Usage
robust.mmm.test(y, group, tail = c("right", "left", "both"))
Arguments
y |
a numeric vector of data values. |
group |
factor of the data. |
tail |
the default option is |
Value
A list with the following elements:
T |
the statistic and |
F |
the statistic and |
N |
the statistic and |
L |
the statistic and |
Each of the list elements is a list of class "htest"
with the following elements:
statistic |
the value of the test statistic. |
p.value |
the |
method |
type of test performed. |
data.name |
a character string giving the name of the data. |
Author(s)
Kimihiro Noguchi, Yulia R. Gel
References
Mudholkar GS, McDermott MP, Mudholkar A (1995). “Robust finite-intersection tests for homogeneity of ordered variances.” Journal of Statistical Planning and Inference, 43(1-2), 185–195. doi:10.1016/0378-3758(94)00018-Q.
See Also
neuhauser.hothorn.test
, levene.test
,
lnested.test
, ltrend.test
, mma.test
Examples
data(pot)
robust.mmm.test(pot[, "obs"], pot[, "type"], tail = "left")$N