rlm.test {lawstat} | R Documentation |
Robust L1 Moment-Based (RLM) Goodness-of-Fit Test for the Laplace Distribution
Description
Robust test for the Laplace distribution. Two options for calculating critical values, namely, approximated with Chi-square distribution and empirical, are available.
Usage
rlm.test(x, crit.values = c("chisq.approximation", "empirical"), N = 0)
Arguments
x |
a numeric vector of data values. |
crit.values |
a character string specifying how the critical values should be obtained: approximated by the Chi-square distribution (default) or empirically. |
N |
number of Monte Carlo simulations for the empirical critical values. |
Details
The test is based on a joint statistic using skewness and kurtosis coefficients. In particular, RLM uses the Average Absolute Deviation from the Median (MAAD), a robust estimate of standard deviation. See Gel (2010).
Value
A list of class "htest"
with the following components:
statistic |
the value of the test statistic. |
parameter |
the degrees of freedom. |
p.value |
the |
method |
type of test was performed. |
data.name |
a character string giving the name of the data. |
Author(s)
Kimihiro Noguchi, W. Wallace Hui, Yulia R. Gel
References
Gel YR (2010). “Test of fit for a Laplace distribution against heavier tailed alternatives.” Computational Statistics & Data Analysis, 54(4), 958–965. doi:10.1016/j.csda.2009.10.008.
See Also
sj.test
, rjb.test
, rqq
,
jarque.bera.test
Examples
## Laplace distributed data
x = rexp(100) - rexp(100)
rlm.test(x)