nig.parameter {lawstat} | R Documentation |
Generate Parameters for the Normal Inverse Gaussian (NIG) Distribution
Description
Produce four parameters, alpha (tail heavyness), beta (asymmetry), delta (scale), and mu (location) from the four variables: mean, variance, kurtosis, and skewness.
Usage
nig.parameter(
mean = mean,
variance = variance,
kurtosis = kurtosis,
skewness = skewness
)
Arguments
mean |
mean of the NIG distribution. |
variance |
variance of the NIG distribution. |
kurtosis |
excess kurtosis of the NIG distribution. |
skewness |
skewness of the NIG distribution. |
Details
The parameters are generated with three conditions:
1) 3\times kurtosis > 5\times skewness^2
;
2) skewness > 0
, and
3) variance > 0
.
See Atkinson (1982),
Barndorff-Nielsen and Blaesild (1983), and
Noguchi and Gel (2010).
Value
A list with the following numeric components:
alpha |
tail-heavyness parameter of the NIG distribution. |
beta |
asymmetry parameter of the NIG distribution. |
delta |
scale parameter of the NIG distribution. |
mu |
location parameter of the NIG distribution. |
Author(s)
Kimihiro Noguchi, Yulia R. Gel
References
Atkinson AC (1982).
“The simulation of generalized inverse Gaussian and hyperbolic random variables.”
SIAM Journal on Scientific and Statistical Computing, 3(4), 502–515.
doi:10.1137/0903033.
Barndorff-Nielsen OE, Blaesild P (1983).
“Hyperbolic distributions.”
In Johnson NL, Kotz S, Read CB (eds.), Encyclopedia of Statistical Sciences, 700–707.
John Wiley & Sons Ltd, New York.
Noguchi K, Gel YR (2010).
“Combination of Levene-type tests and a finite-intersection method for testing equality of variances against ordered alternatives.”
Journal of Nonparametric Statistics, 22(7), 897–913.
doi:10.1080/10485251003698505.
See Also
Examples
library(fBasics)
test <- nig.parameter(0, 2, 5, 1)
random <- rnig(1000000, alpha = test$alpha, beta = test$beta,
mu = test$mu, delta = test$delta)
mean(random)
var(random)
kurtosis(random)
skewness(random)