model.syntax {lavaan} | R Documentation |
The Lavaan Model Syntax
Description
The lavaan model syntax describes a latent variable model. The
function lavaanify
turns it into a table that represents the full
model as specified by the user. We refer to this table as the parameter table.
Usage
lavaanify(model = NULL, meanstructure = FALSE, int.ov.free = FALSE,
int.lv.free = FALSE, marker.int.zero = FALSE,
orthogonal = FALSE, orthogonal.y = FALSE,
orthogonal.x = FALSE, orthogonal.efa = FALSE, std.lv = FALSE,
correlation = FALSE, effect.coding = "", conditional.x = FALSE,
fixed.x = FALSE, parameterization = "delta", constraints = NULL,
ceq.simple = FALSE, auto = FALSE, model.type = "sem",
auto.fix.first = FALSE, auto.fix.single = FALSE, auto.var = FALSE,
auto.cov.lv.x = FALSE, auto.cov.y = FALSE, auto.th = FALSE,
auto.delta = FALSE, auto.efa = FALSE,
varTable = NULL, ngroups = 1L, nthresholds = NULL,
group.equal = NULL, group.partial = NULL, group.w.free = FALSE,
debug = FALSE, warn = TRUE, as.data.frame. = TRUE)
lavParTable(model = NULL, meanstructure = FALSE, int.ov.free = FALSE,
int.lv.free = FALSE, marker.int.zero = FALSE,
orthogonal = FALSE, orthogonal.y = FALSE,
orthogonal.x = FALSE, orthogonal.efa = FALSE, std.lv = FALSE,
correlation = FALSE, effect.coding = "", conditional.x = FALSE,
fixed.x = FALSE, parameterization = "delta", constraints = NULL,
ceq.simple = FALSE, auto = FALSE, model.type = "sem",
auto.fix.first = FALSE, auto.fix.single = FALSE, auto.var = FALSE,
auto.cov.lv.x = FALSE, auto.cov.y = FALSE, auto.th = FALSE,
auto.delta = FALSE, auto.efa = FALSE,
varTable = NULL, ngroups = 1L, nthresholds = NULL,
group.equal = NULL, group.partial = NULL, group.w.free = FALSE,
debug = FALSE, warn = TRUE, as.data.frame. = TRUE)
lavParseModelString(model.syntax = '', as.data.frame. = FALSE,
parser = "new", warn = TRUE, debug = FALSE)
Arguments
model |
A description of the user-specified model. Typically, the model
is described using the lavaan model syntax; see details for more
information. Alternatively, a parameter table (e.g., the output of
|
model.syntax |
The model syntax specifying the model. Must be a literal string. |
meanstructure |
If |
int.ov.free |
If |
int.lv.free |
If |
marker.int.zero |
Logical. Only relevant if the metric of each latent
variable is set by fixing the first factor loading to unity.
If |
orthogonal |
If |
orthogonal.y |
If |
orthogonal.x |
If |
orthogonal.efa |
If |
std.lv |
If |
correlation |
If |
effect.coding |
Can be logical or character string. If
logical and |
conditional.x |
If |
fixed.x |
If |
parameterization |
Currently only used if data is categorical. If
|
constraints |
Additional (in)equality constraints. See details for more information. |
ceq.simple |
If |
auto |
If |
model.type |
Either |
auto.fix.first |
If |
auto.fix.single |
If |
auto.var |
If |
auto.cov.lv.x |
If |
auto.cov.y |
If |
auto.th |
If |
auto.delta |
If |
auto.efa |
If |
varTable |
The variable table containing information about the observed variables in the model. |
ngroups |
The number of (independent) groups. |
nthresholds |
Either a single integer or a named vector of integers.
If |
group.equal |
A vector of character strings. Only used in
a multiple group analysis. Can be one or more of the following:
|
group.partial |
A vector of character strings containing the labels of the parameters which should be free in all groups (thereby overriding the group.equal argument for some specific parameters). |
group.w.free |
Logical. If |
as.data.frame. |
If |
parser |
Character. If |
warn |
If |
debug |
If |
Details
The model syntax consists of one or more formula-like expressions, each one
describing a specific part of the model. The model syntax can be read from
a file (using readLines
), or can be specified as a literal
string enclosed by single quotes as in the example below.
myModel <- ' # 1. latent variable definitions f1 =~ y1 + y2 + y3 f2 =~ y4 + y5 + y6 f3 =~ y7 + y8 + y9 + y10 f4 =~ y11 + y12 + y13 ! this is also a comment # 2. regressions f1 ~ f3 + f4 f2 ~ f4 y1 + y2 ~ x1 + x2 + x3 # 3. (co)variances y1 ~~ y1 y2 ~~ y4 + y5 f1 ~~ f2 # 4. intercepts f1 ~ 1; y5 ~ 1 # 5. thresholds y11 | t1 + t2 + t3 y12 | t1 y13 | t1 + t2 # 6. scaling factors y11 ~*~ y11 y12 ~*~ y12 y13 ~*~ y13 # 7. formative factors f5 <~ z1 + z2 + z3 + z4 '
Blank lines and comments can be used in between the formulas, and formulas can be split over multiple lines. Both the sharp (#) and the exclamation (!) characters can be used to start a comment. Multiple formulas can be placed on a single line if they are separated by a semicolon (;).
There can be seven types of formula-like expressions in the model syntax:
Latent variable definitions: The
"=~"
operator can be used to define (continuous) latent variables. The name of the latent variable is on the left of the"=~"
operator, while the terms on the right, separated by"+"
operators, are the indicators of the latent variable.The operator
"=~"
can be read as “is manifested by”.Regressions: The
"~"
operator specifies a regression. The dependent variable is on the left of a"~"
operator and the independent variables, separated by"+"
operators, are on the right. These regression formulas are similar to the way ordinary linear regression formulas are used in R, but they may include latent variables. Interaction terms are currently not supported.Variance-covariances: The
"~~"
(‘double tilde’) operator specifies (residual) variances of an observed or latent variable, or a set of covariances between one variable, and several other variables (either observed or latent). Several variables, separated by"+"
operators can appear on the right. This way, several pairwise (co)variances involving the same left-hand variable can be expressed in a single expression. The distinction between variances and residual variances is made automatically.Intercepts: A special case of a regression formula can be used to specify an intercept (or a mean) of either an observed or a latent variable. The variable name is on the left of a
"~"
operator. On the right is only the number"1"
representing the intercept. Including an intercept formula in the model automatically impliesmeanstructure = TRUE
. The distinction between intercepts and means is made automatically.Thresholds: The
"|"
operator can be used to define the thresholds of categorical endogenous variables (on the left hand side of the operator). By convention, the thresholds (on the right hand sided, separated by the"+"
operator, are named"t1"
,"t2"
, etcetera.Scaling factors: The
"~*~"
operator defines a scale factor. The variable name on the left hand side must be the same as the variable name on the right hand side. Scale factors are used in the Delta parameterization, in a multiple group analysis when factor indicators are categorical.Formative factors: The
"<~"
operator can be used to define a formative factor (on the right hand side of the operator), in a similar way to how a reflexive factor is defined (using the"=~"
operator). This is just syntax sugar to define a phantom latent variable (equivalent to using"f =~ 0"
). And in addition, the (residual) variance of the formative factor is fixed to zero.
There are 4 additional operators, also with left- and right-hand sides, that can
be included in model syntax. Three of them are used to specify (in)equality
constraints on estimated parameters (==
, >
, and <
), and
those are demonstrated in a later section about
(In)equality constraints.
The final additional operator (:=
) can be used to define “new” parameters
that are functions of one or more other estimated parameters. The :=
operator is demonstrated in a section about User-defined parameters.
Usually, only a single variable name appears on the left side of an
operator. However, if multiple variable names are specified,
separated by the "+"
operator, the formula is repeated for each
element on the left side (as for example in the third regression
formula in the example above). The only exception are scaling factors, where
only a single element is allowed on the left hand side.
In the right-hand side of these formula-like expressions, each element can be
modified (using the "*"
operator) by either a numeric constant,
an expression resulting in a numeric constant, an expression resulting
in a character vector, or one
of three special functions: start()
, label()
and equal()
.
This provides the user with a mechanism to fix parameters, to provide
alternative starting values, to label the parameters, and to define equality
constraints among model parameters. All "*"
expressions are
referred to as modifiers. They are explained in more detail in the
following sections.
Fixing parameters
It is often desirable to fix a model parameter that is otherwise (by default) free. Any parameter in a model can be fixed by using a modifier resulting in a numerical constaint. Here are some examples:
Fixing the regression coefficient of the predictor
x2
:y ~ x1 + 2.4*x2 + x3
Specifying an orthogonal (zero) covariance between two latent variables:
f1 ~~ 0*f2
Specifying an intercept and a linear slope in a growth model:
i =~ 1*y11 + 1*y12 + 1*y13 + 1*y14 s =~ 0*y11 + 1*y12 + 2*y13 + 3*y14
Instead of a numeric constant, one can use a mathematical function that returns
a numeric constant, for example sqrt(10)
. Multiplying with NA
will force the corresponding parameter to be free.
Additionally, the ==
operator can be used to set a labeled parameter
equal to a specific numeric value. This will be demonstrated in the section below
about (In)equality constraints.
Starting values
User-provided starting values can be given by using the special function
start()
, containing a numeric constant. For example:
y ~ x1 + start(1.0)*x2 + x3
Note that if a starting value is provided, the parameter is not automatically considered to be free.
Parameter labels and equality constraints
Each free parameter in a model is automatically given a name (or label).
The name given to a model
parameter consists of three parts, coerced to a single character vector.
The first part is the name of the variable in the left-hand side of the
formula where the parameter was
implied. The middle part is based on the special ‘operator’ used in the
formula. This can be either one of "=~"
, "~"
or "~~"
. The
third part is the name of the variable in the right-hand side of the formula
where the parameter was implied, or "1"
if it is an intercept. The three
parts are pasted together in a single string. For example, the name of the
fixed regression coefficient in the regression formula
y ~ x1 + 2.4*x2 + x3
is the string "y~x2"
.
The name of the parameter
corresponding to the covariance between two latent variables in the
formula f1 ~~ f2
is the string "f1~~f2"
.
Although this automatic labeling of parameters is convenient, the user may
specify its own labels for specific parameters simply by pre-multiplying
the corresponding term (on the right hand side of the operator only) by
a character string (starting with a letter).
For example, in the formula f1 =~ x1 + x2 + mylabel*x3
, the parameter
corresponding with the factor loading of
x3
will be named "mylabel"
.
An alternative way to specify the label is as follows:
f1 =~ x1 + x2 + label("mylabel")*x3
,
where the label is the argument of special function label()
;
this can be useful if the label contains a space, or an operator (like "~").
To constrain a parameter
to be equal to another target parameter, there are two ways. If you
have specified your own labels, you can use the fact that
equal labels imply equal parameter values.
If you rely on automatic parameter labels, you
can use the special function equal()
. The argument of
equal()
is the (automatic or user-specified) name of the target
parameter. For example, in the confirmatory factor analysis example below, the
intercepts of the three indicators of each latent variable are constrained to
be equal to each other. For the first three, we have used the default
names. For the last three, we have provided a custom label for the
y2a
intercept.
model <- ' # two latent variables with fixed loadings f1 =~ 1*y1a + 1*y1b + 1*y1c f2 =~ 1*y2a + 1*y2b + 1*y2c # intercepts constrained to be equal # using the default names y1a ~ 1 y1b ~ equal("y1a~1") * 1 y1c ~ equal("y1a~1") * 1 # intercepts constrained to be equal # using a custom label y2a ~ int2*1 y2b ~ int2*1 y2c ~ int2*1 '
Multiple groups
In a multiple group analysis, modifiers that contain a single element should be replaced by a vector, having the same length as the number of groups. If you provide a single element, it will be recycled for all the groups. This may be dangerous, in particular when the modifier is a label. In that case, the (same) label is copied across all groups, and this would imply an equality constraint across groups. Therefore, when using modifiers in a multiple group setting, it is always safer (and cleaner) to specify the same number of elements as the number of groups. Consider this example with two groups:
HS.model <- ' visual =~ x1 + 0.5*x2 + c(0.6, 0.8)*x3 textual =~ x4 + start(c(1.2, 0.6))*x5 + x6 speed =~ x7 + x8 + c(x9.group1, x9.group2)*x9 '
In this example, the factor loading of the ‘x2’ indicator is fixed to the value 0.5 for both groups. However, the factor loadings of the ‘x3’ indicator are fixed to 0.6 and 0.8 for group 1 and group 2 respectively. The same logic is used for all modifiers. Note that character vectors can contain unquoted strings.
Multiple modifiers
In the model syntax, you can specify a variable more than once on the right hand side of an operator; therefore, several ‘modifiers’ can be applied simultaneously; for example, if you want to fix the value of a parameter and also label that parameter, you can use something like:
f1 =~ x1 + x2 + 4*x3 + x3.loading*x3
(In)equality constraints
The ==
operator can be used either to fix a parameter to a specific value,
or to set an estimated parameter equal to another parameter. Adapting the
example in the Parameter labels and equality constraints section, we
could have used different labels for the second factor's intercepts:
y2a ~ int1*1 y2b ~ int2*1 y2c ~ int3*1
Then, we could fix the first intercept to zero by including in the syntax an operation that indicates the parameter's label equals that value:
int1 == 0
Whereas we could still estimate the other two intercepts under an equality constraint by setting their different labels equal to each other:
int2 == int3
Optimization can be less efficient when constraining parameters this way (see
the documentation linked under See also for more information). But the
flexibility might be advantageous. For example, the constraints could be
specified in a separate character-string object, which can be passed to the
lavaan(..., constraints=)
argument, enabling users to compare results
with(out) the constraints.
Inequality constraints work much the same way, using the <
or >
operator indicate which estimated parameter is hypothesized to be greater/less
than either a specific value or another estimated parameter. For example, a
variance can be constrained to be nonnegative:
y1a ~~ var1a*y1a ## hypothesized constraint: var1a > 0
Or the factor loading of a particular indicator might be expected to exceed other indicators' loadings:
f1 =~ L1*y1a + L2*y1b + L3*y1c ## hypothesized constraints: L1 > L2 L3 < L1
User-defined parameters
Functions of parameters can be useful to test particular hypotheses. Following
from the Multiple groups
example, we might be interested in which group's
factor loading is larger (i.e., an estimate of differential item functioning
(DIF) when the latent scales are linked by anchor items with equal loadings).
speed =~ c(L7, L7)*x7 + c(L8, L8)*x8 + c(L9.group1, L9.group2)*x9 ' ## user-defined parameter: DIF_L9 := L9.group1 - L9.group2
Note that this hypothesis is easily tested without a user-defined parameter by
using the lavTestWald()
function. However, a user-defined parameter
additionally provides an estimate of the parameter being tested.
User-defined parameters are particularly useful for specifying indirect effects in models of mediation. For example:
model <- ' # direct effect Y ~ c*X # mediator M ~ a*X Y ~ b*M # user defined parameters: # indirect effect (a*b) ab := a*b # total effect (defined using another user-defined parameter) total := ab + c '
References
Rosseel, Y. (2012). lavaan
: An R package for structural equation
modeling. Journal of Statistical Software, 48(2), 1–36.
doi:10.18637/jss.v048.i02