lavTestLRT {lavaan} | R Documentation |
LRT test
Description
LRT test for comparing (nested) lavaan models.
Usage
lavTestLRT(object, ..., method = "default", test = "default",
A.method = "delta", scaled.shifted = TRUE,
type = "Chisq", model.names = NULL)
anova(object, ...)
Arguments
object |
An object of class |
... |
additional objects of class |
method |
Character string. The possible options are
|
test |
Character string specifying which scaled test statistics to use,
in case multiple scaled |
A.method |
Character string. The possible options are |
scaled.shifted |
Logical. Only used when method = |
type |
Character. If |
model.names |
Character vector. If provided, use these model names in the first column of the anova table. |
Details
The anova
function for lavaan objects simply calls the
lavTestLRT
function, which has a few additional arguments.
The only test=
options that currently have actual consequences are
"satorra.bentler"
, "yuan.bentler"
, or "yuan.bentler.mplus"
because "mean.var.adjusted"
and "scaled.shifted"
are
currently distinguished by the scaled.shifted
argument.
See lavOptions
for details about test=
options
implied by robust estimator=
options). The "default"
is to
select the first available scaled statistic, if any. To check which test(s)
were calculated when fitting your model(s), use
lavInspect(fit, "options")$test
.
If type = "Chisq"
and the test statistics are scaled, a
special scaled difference test statistic is computed. If method
is
"satorra.bentler.2001"
, a simple approximation is used
described in Satorra & Bentler (2001). In some settings,
this can lead to a negative test statistic. To ensure a positive
test statistic, we can use the method proposed by
Satorra & Bentler (2010). Alternatively, when method="satorra.2000"
,
the original formulas of Satorra (2000) are used. The latter is used for
model comparison, when ...
contain additional (nested) models.
Even when test statistics are scaled in object
or ...
,
users may request the method="standard"
test statistic,
without a robust adjustment.
Value
An object of class anova. When given a single argument, it simply returns the test statistic of this model. When given a sequence of objects, this function tests the models against one another, after reordering the models according to their degrees of freedom.
Note
If there is a lavaan
model stored in
object@external$h1.model
, it will be added to ...
References
Satorra, A. (2000). Scaled and adjusted restricted tests in multi-sample analysis of moment structures. In Heijmans, R.D.H., Pollock, D.S.G. & Satorra, A. (eds.), Innovations in multivariate statistical analysis: A Festschrift for Heinz Neudecker (pp.233-247). London, UK: Kluwer Academic Publishers.
Satorra, A., & Bentler, P. M. (2001). A scaled difference chi-square test statistic for moment structure analysis. Psychometrika, 66(4), 507-514. doi:10.1007/BF02296192
Satorra, A., & Bentler, P. M. (2010). Ensuring postiveness of the scaled difference chi-square test statistic. Psychometrika, 75(2), 243-248. doi:10.1007/s11336-009-9135-y
Examples
HS.model <- '
visual =~ x1 + b1*x2 + x3
textual =~ x4 + b2*x5 + x6
speed =~ x7 + b3*x8 + x9
'
fit1 <- cfa(HS.model, data = HolzingerSwineford1939)
fit0 <- cfa(HS.model, data = HolzingerSwineford1939,
orthogonal = TRUE)
lavTestLRT(fit1, fit0)
## When multiple test statistics are selected when the model is fitted,
## use the type= and test= arguments to select a test for comparison.
## refit models, requesting 6 test statistics (in addition to "standard")
t6.1 <- cfa(HS.model, data = HolzingerSwineford1939,
test = c("browne.residual.adf","scaled.shifted","mean.var.adjusted",
"satorra.bentler", "yuan.bentler", "yuan.bentler.mplus"))
t6.0 <- cfa(HS.model, data = HolzingerSwineford1939, orthogonal = TRUE,
test = c("browne.residual.adf","scaled.shifted","mean.var.adjusted",
"satorra.bentler", "yuan.bentler", "yuan.bentler.mplus"))
## By default (test="default", type="Chisq"), the first scaled statistic
## requested will be used. Here, that is "scaled.shifted"
lavTestLRT(t6.1, t6.0)
## But even if "satorra.bentler" were requested first, method="satorra.2000"
## provides the scaled-shifted chi-squared difference test:
lavTestLRT(t6.1, t6.0, method = "satorra.2000")
## == lavTestLRT(update(t6.1, test = "scaled.shifted"), update(t6.0, test = "scaled.shifted"))
## The mean- and variance-adjusted (Satterthwaite) statistic implies
## scaled.shifted = FALSE
lavTestLRT(t6.1, t6.0, method = "satorra.2000", scaled.shifted = FALSE)
## Because "satorra.bentler" is not the first scaled test in the list,
## we MUST request it explicitly:
lavTestLRT(t6.1, t6.0, test = "satorra.bentler") # method="satorra.bentler.2001"
## == lavTestLRT(update(t6.1, test = "satorra.bentler"),
## update(t6.0, test = "satorra.bentler"))
## The "strictly-positive test" is necessary when the above test is < 0:
lavTestLRT(t6.1, t6.0, test = "satorra.bentler", method = "satorra.bentler.2010")
## Likewise, other scaled statistics can be selected:
lavTestLRT(t6.1, t6.0, test = "yuan.bentler")
## == lavTestLRT(update(t6.1, test = "yuan.bentler"),
## update(t6.0, test = "yuan.bentler"))
lavTestLRT(t6.1, t6.0, test = "yuan.bentler.mplus")
## == lavTestLRT(update(t6.1, test = "yuan.bentler.mplus"),
## update(t6.0, test = "yuan.bentler.mplus"))
## To request the difference between Browne's (1984) residual-based statistics,
## rather than statistics based on the fitted model's discrepancy function,
## use the type= argument:
lavTestLRT(t6.1, t6.0, type = "browne.residual.adf")
## Despite requesting multiple robust tests, it is still possible to obtain
## the standard chi-squared difference test (i.e., without a robust correction)
lavTestLRT(t6.1, t6.0, method = "standard")
## == lavTestLRT(update(t6.1, test = "standard"), update(t6.0, test = "standard"))