score2 {lavaSearch2} | R Documentation |
Score With Small Sample Correction
Description
Extract the (individual) score a the latent variable model.
Similar to lava::score
but with small sample correction.
Usage
score2(object, indiv, cluster, as.lava, ...)
## S3 method for class 'lvmfit'
score2(
object,
indiv = FALSE,
cluster = NULL,
as.lava = TRUE,
ssc = lava.options()$ssc,
...
)
## S3 method for class 'lvmfit2'
score2(object, indiv = FALSE, cluster = NULL, as.lava = TRUE, ...)
## S3 method for class 'lvmfit2'
score(x, indiv = FALSE, cluster = NULL, as.lava = TRUE, ...)
Arguments
object , x |
a |
indiv |
[logical] If |
cluster |
[integer vector] the grouping variable relative to which the observations are iid. |
as.lava |
[logical] if |
... |
additional argument passed to |
ssc |
[character] method used to correct the small sample bias of the variance coefficients: no correction ( |
Details
When argument object is a lvmfit
object, the method first calls estimate2
and then extract the confidence intervals.
Value
When argument indiv is TRUE
, a matrix containing the score relative to each sample (in rows)
and each model coefficient (in columns). Otherwise a numeric vector of length the number of model coefficients.
See Also
estimate2
to obtain lvmfit2
objects.
Examples
#### simulate data ####
n <- 5e1
p <- 3
X.name <- paste0("X",1:p)
link.lvm <- paste0("Y~",X.name)
formula.lvm <- as.formula(paste0("Y~",paste0(X.name,collapse="+")))
m <- lvm(formula.lvm)
distribution(m,~Id) <- Sequence.lvm(0)
set.seed(10)
d <- lava::sim(m,n)
#### linear models ####
e.lm <- lm(Y~X1+X2+X3, data = d)
#### latent variable models ####
m.lvm <- lvm(formula.lvm)
e.lvm <- estimate(m.lvm,data=d)
e2.lvm <- estimate2(m.lvm,data=d)
score.tempo <- score(e2.lvm, indiv = TRUE)
colSums(score.tempo)