iidJack {lavaSearch2} | R Documentation |
Jackknife iid Decomposition from Model Object
Description
Extract iid decomposition (i.e. influence function) from model object.
Usage
iidJack(object, ...)
## Default S3 method:
iidJack(
object,
data = NULL,
grouping = NULL,
cpus = 1,
keep.warnings = TRUE,
keep.error = TRUE,
cl = NULL,
trace = TRUE,
...
)
Arguments
object |
a object containing the model. |
... |
[internal] only used by the generic method. |
data |
[data.frame] dataset used to perform the jackknife. |
grouping |
[vector] variable defining cluster of observations that will be simultaneously removed by the jackknife. |
cpus |
[integer >0] the number of processors to use. If greater than 1, the fit of the model and the computation of the influence function for each jackknife sample is performed in parallel. |
keep.warnings |
[logical] keep warning messages obtained when estimating the model with the jackknife samples. |
keep.error |
[logical]keep error messages obtained when estimating the model with the jackknife samples. |
cl |
[cluster] a parallel socket cluster generated by |
trace |
[logical] should a progress bar be used to trace the execution of the function |
Value
A matrix with in row the samples and in columns the parameters.
Examples
n <- 20
set.seed(10)
mSim <- lvm(c(Y1,Y2,Y3,Y4,Y5) ~ 1*eta)
latent(mSim) <- ~eta
categorical(mSim, K=2) <- ~G
transform(mSim, Id ~ eta) <- function(x){1:NROW(x)}
dW <- lava::sim(mSim, n, latent = FALSE)
#### LVM ####
## Not run:
m1 <- lvm(c(Y1,Y2,Y3,Y4,Y5) ~ 1*eta)
latent(m1) <- ~eta
regression(m1) <- eta ~ G
e <- estimate(m1, data = dW)
iid1 <- iidJack(e)
iid2 <- iid(e)
attr(iid2, "bread") <- NULL
apply(iid1,2,sd)
apply(iid2,2,sd)
quantile(iid2 - iid1)
## End(Not run)