hessian2 {lavaSearch2} | R Documentation |
Hessian With Small Sample Correction.
Description
Extract the hessian from a latent variable model, with small sample correction
Usage
hessian2(object, indiv, cluster, as.lava, ...)
## S3 method for class 'lvmfit'
hessian2(
object,
indiv = FALSE,
cluster = NULL,
as.lava = TRUE,
ssc = lava.options()$ssc,
...
)
## S3 method for class 'lvmfit2'
hessian2(object, indiv = FALSE, cluster = NULL, as.lava = TRUE, ...)
Arguments
object |
a |
indiv |
[logical] If |
cluster |
[integer vector] the grouping variable relative to which the observations are iid. |
as.lava |
[logical] if |
... |
additional argument passed to |
ssc |
[character] method used to correct the small sample bias of the variance coefficients: no correction ( |
Details
When argument object is a lvmfit
object, the method first calls estimate2
and then extract the hessian.
Value
An array containing the second derivative of the likelihood relative to each sample (dim 3) and each pair of model coefficients (dim 1,2).
See Also
estimate2
to obtain lvmfit2
objects.
Examples
#### simulate data ####
n <- 5e1
p <- 3
X.name <- paste0("X",1:p)
link.lvm <- paste0("Y~",X.name)
formula.lvm <- as.formula(paste0("Y~",paste0(X.name,collapse="+")))
m <- lvm(formula.lvm)
distribution(m,~Id) <- Sequence.lvm(0)
set.seed(10)
d <- lava::sim(m,n)
#### latent variable models ####
e.lvm <- estimate(lvm(formula.lvm),data=d)
hessian2(e.lvm)