createContrast {lavaSearch2}R Documentation

Create Contrast matrix

Description

Returns a contrast matrix corresponding an object. The contrast matrix will contains the hypotheses in rows and the model coefficients in columns.

Usage

createContrast(object, ...)

## S3 method for class 'character'
createContrast(object, ...)

## S3 method for class 'lvmfit'
createContrast(object, linfct, ...)

## S3 method for class 'lvmfit2'
createContrast(object, linfct, ...)

## S3 method for class 'list'
createContrast(object, linfct = NULL, ...)

## S3 method for class 'mmm'
createContrast(object, linfct = NULL, ...)

Arguments

object

a lvmfit object or a list of a lvmfit objects.

...

Argument to be passed to .createContrast:

  • diff.first [logical] should the contrasts between the first and any of the other coefficients define the null hypotheses.

  • add.rowname [logical] add rownames to the contrast matrix and names to the right-hand side.

  • rowname.rhs [logical] when naming the hypotheses, add the right-hand side (i.e. "X1-X2=0" instead of "X1-X2").

  • sep [character vector of length2] character surrounding the left part of the row names.

linfct

[vector of characters] expression defining the linear hypotheses to be tested. Can also be a regular expression (of length 1) that is used to identify the coefficients to be tested using grep. See the examples section.

Details

One can initialize an empty contrast matrix setting the argumentlinfct to character(0).

Value

A list containing

Examples

## Simulate data
mSim <- lvm(X ~ Age + Treatment,
            Y ~ Gender + Treatment,
            c(Z1,Z2,Z3) ~ eta, eta ~ treatment,
            Age[40:5]~1)
latent(mSim) <- ~eta
categorical(mSim, labels = c("placebo","SSRI")) <- ~Treatment
categorical(mSim, labels = c("male","female")) <- ~Gender
n <- 1e2
set.seed(10)
df.data <- lava::sim(mSim,n)

## Estimate separate models
lmX <- lava::estimate(lvm(X ~ -1 + Age + Treatment), data = df.data)
lmY <- lava::estimate(lvm(Y ~ -1 + Gender + Treatment), data = df.data)
lvmZ <- lava::estimate(lvm(c(Z1,Z2,Z3) ~ -1 + 1*eta, eta ~ -1 + Treatment), 
                 data = df.data)

## Contrast matrix for a given model
createContrast(lmX, linfct = "X~Age")
createContrast(lmX, linfct = c("X~Age=0","X~Age+5*X~TreatmentSSRI=0"))
createContrast(lmX, linfct = c("X~Age=0","X~Age+5*X~TreatmentSSRI=0"), sep = NULL)
createContrast(lmX, linfct = character(0))

## Contrast matrix for the join model
ls.lvm <- list(X = lmX, Y = lmY, Z = lvmZ)
createContrast(ls.lvm, linfct = "TreatmentSSRI=0")
createContrast(ls.lvm, linfct = "TreatmentSSRI=0", rowname.rhs = FALSE)
createContrast(ls.lvm, linfct = character(0))

## Contrast for multigroup models
m <- lava::lvm(Y~Age+Treatment)
e <- lava::estimate(list(m,m), data = split(df.data, df.data$Gender))
print(coef(e))
createContrast(e, linfct = "Y~TreatmentSSRI@1 - Y~TreatmentSSRI@2 = 0")
createContrast(e, linfct = "Y~TreatmentSSRI@2 - Y~TreatmentSSRI@1 = 0")


[Package lavaSearch2 version 2.0.3 Index]