calibrateType1 {lavaSearch2} | R Documentation |
Simulation Study Assessing Bias and Type 1 Error
Description
Perform a simulation study over one or several sample size to assess the bias of the estimate and the type 1 error of the Wald test and robust Wald test
Usage
calibrateType1(object, param, n.rep, ...)
## S3 method for class 'lvm'
calibrateType1(
object,
param,
n.rep,
n,
correction = TRUE,
warmup = NULL,
null = NULL,
F.test = FALSE,
cluster = NULL,
generative.object = NULL,
generative.coef = NULL,
true.coef = NULL,
n.true = 1e+06,
round.true = 2,
bootstrap = FALSE,
n.bootstrap = 1000,
checkType1 = FALSE,
checkType2 = FALSE,
dir.save = NULL,
label.file = NULL,
seed = NULL,
cpus = 1,
trace = 2,
...
)
## S3 method for class 'lvmfit'
calibrateType1(
object,
param,
n.rep,
correction = TRUE,
F.test = FALSE,
bootstrap = FALSE,
n.bootstrap = 1000,
seed = NULL,
trace = 2,
cpus = 1,
...
)
Arguments
object |
a |
param |
[character vector] names of the coefficient whose value will be tested. |
n.rep |
[integer, >0] number of simulations per sample size. |
... |
[internal] Only used by the generic method. |
n |
[integer vector, >0] sample size(s) considered in the simulation study. |
correction |
[logical] should the type 1 error after correction be computed? |
warmup |
[list of lvm] a list of |
null |
[numeric vector] vector of null hypotheses, one for each model coefficient. By default a vector of 0. |
F.test |
[logical] should a multivariate Wald test be perform testing simultaneously all the null hypotheses? |
cluster |
[integer vector] the grouping variable relative to which the observations are iid.
Will be passed to |
generative.object |
[lvm] object defining the statistical model generating the data. |
generative.coef |
[name numeric vector] values for the parameters of the generative model.
Can also be |
true.coef |
[name numeric vector] expected values for the parameters of the fitted model. |
n.true |
[integer, >0] sample size at which the estimated coefficients will be a reliable approximation of the true coefficients. |
round.true |
[integer, >0] the number of decimal places to be used for the true value of the coefficients. No rounding is done if |
bootstrap |
[logical] should bootstrap resampling be performed? |
n.bootstrap |
[integer, >0] the number of bootstrap sample to be used for each bootstrap. |
checkType1 |
[logical] returns an error if the coefficients associated to the null hypotheses do not equal 0. |
checkType2 |
[logical] returns an error if the coefficients associated to the null hypotheses equal 0. |
dir.save |
[character] path to the directory were the results should be exported.
Can also be |
label.file |
[character] element to include in the file name. |
seed |
[integer, >0] value that will be set before adjustment for multiple comparisons to ensure reproducible results.
Can also be |
cpus |
[integer >0] the number of processors to use. If greater than 1, the simulations are performed in parallel. |
trace |
[integer] should the execution of the function be trace. Can be 0, 1 or 2. |
Value
An object of class calibrateType1
.
Author(s)
Brice Ozenne
See Also
link{autoplot.calibrateType1}
for a graphical display of the bias or of the type 1 error.
Examples
## Not run:
#### simulate data ####
m.Sim <- lvm(c(Y1[mu1:sigma]~1*eta,
Y2[mu2:sigma]~1*eta,
Y3[mu3:sigma]~1*eta,
eta~beta1*Group+beta2*Gender))
latent(m.Sim) <- ~eta
categorical(m.Sim, labels = c("M","F")) <- ~Gender
d <- lava::sim(m.Sim, 1e2)
#### calibrate type 1 error on the estimated model ####
m <- lvm(Y1~eta,
Y2~eta,
Y3~eta,
eta~Group+Gender)
e <- lava::estimate(m, data = d)
res <- calibrateType1(e, param = "eta~Group", n.rep = 100)
res <- calibrateType1(e, param = c("eta~Group","Y1~eta"), F.test = TRUE, n.rep = 100)
res <- calibrateType1(e, param = "eta~Group", n.rep = 100, cpus = 4)
summary(res)
## End(Not run)