vars {lava} | R Documentation |
Extract variable names from latent variable model
Description
Extract exogenous variables (predictors), endogenous variables (outcomes),
latent variables (random effects), manifest (observed) variables from a
lvm
object.
Usage
vars(x,...)
endogenous(x,...)
exogenous(x,...)
manifest(x,...)
latent(x,...)
## S3 replacement method for class 'lvm'
exogenous(x, xfree = TRUE,...) <- value
## S3 method for class 'lvm'
exogenous(x,variable,latent=FALSE,index=TRUE,...)
## S3 replacement method for class 'lvm'
latent(x,clear=FALSE,...) <- value
Arguments
x |
|
... |
Additional arguments to be passed to the low level functions |
variable |
list of variables to alter |
latent |
Logical defining whether latent variables without parents should be included in the result |
index |
For internal use only |
clear |
Logical indicating whether to add or remove latent variable status |
xfree |
For internal use only |
value |
Formula or character vector of variable names. |
Details
vars
returns all variables of the lvm
-object including
manifest and latent variables. Similarily manifest
and latent
returns the observered resp. latent variables of the model.
exogenous
returns all manifest variables without parents, e.g.
covariates in the model, however the argument latent=TRUE
can be used
to also include latent variables without parents in the result. Pr. default
lava
will not include the parameters of the exogenous variables in
the optimisation routine during estimation (likelihood of the remaining
observered variables conditional on the covariates), however this behaviour
can be altered via the assignment function exogenous<-
telling
lava
which subset of (valid) variables to condition on. Finally
latent
returns a vector with the names of the latent variables in
x
. The assigment function latent<-
can be used to change the
latent status of variables in the model.
Value
Vector of variable names.
Author(s)
Klaus K. Holst
See Also
endogenous
, manifest
,
latent
, exogenous
, vars
Examples
g <- lvm(eta1 ~ x1+x2)
regression(g) <- c(y1,y2,y3) ~ eta1
latent(g) <- ~eta1
endogenous(g)
exogenous(g)
identical(latent(g), setdiff(vars(g),manifest(g)))