constrain<- {lava} | R Documentation |
Add non-linear constraints to latent variable model
Description
Add non-linear constraints to latent variable model
Usage
## Default S3 replacement method:
constrain(x,par,args,endogenous=TRUE,...) <- value
## S3 replacement method for class 'multigroup'
constrain(x,par,k=1,...) <- value
constraints(object,data=model.frame(object),vcov=object$vcov,level=0.95,
p=pars.default(object),k,idx,...)
Arguments
x |
|
... |
Additional arguments to be passed to the low level functions |
value |
Real function taking args as a vector argument |
par |
Name of new parameter. Alternatively a formula with lhs
specifying the new parameter and the rhs defining the names of the
parameters or variable names defining the new parameter (overruling the
|
args |
Vector of variables names or parameter names that are used in
defining |
endogenous |
TRUE if variable is endogenous (sink node) |
k |
For multigroup models this argument specifies which group to add/extract the constraint |
object |
|
data |
Data-row from which possible non-linear constraints should be calculated |
vcov |
Variance matrix of parameter estimates |
level |
Level of confidence limits |
p |
Parameter vector |
idx |
Index indicating which constraints to extract |
Details
Add non-linear parameter constraints as well as non-linear associations between covariates and latent or observed variables in the model (non-linear regression).
As an example we will specify the follow multiple regression model:
E(Y|X_1,X_2) = \alpha + \beta_1 X_1 + \beta_2 X_2
V(Y|X_1,X_2)
= v
which is defined (with the appropiate parameter labels) as
m <- lvm(y ~ f(x,beta1) + f(x,beta2))
intercept(m) <- y ~ f(alpha)
covariance(m) <- y ~ f(v)
The somewhat strained parameter constraint
v =
\frac{(beta1-beta2)^2}{alpha}
can then specified as
constrain(m,v ~ beta1 + beta2 + alpha) <- function(x)
(x[1]-x[2])^2/x[3]
A subset of the arguments args
can be covariates in the model,
allowing the specification of non-linear regression models. As an example
the non-linear regression model
E(Y\mid X) = \nu + \Phi(\alpha +
\beta X)
where \Phi
denotes the standard normal cumulative
distribution function, can be defined as
m <- lvm(y ~ f(x,0)) # No linear effect of x
Next we add three new parameters using the parameter
assigment
function:
parameter(m) <- ~nu+alpha+beta
The intercept of Y
is defined as mu
intercept(m) <- y ~ f(mu)
And finally the newly added intercept parameter mu
is defined as the
appropiate non-linear function of \alpha
, \nu
and \beta
:
constrain(m, mu ~ x + alpha + nu) <- function(x)
pnorm(x[1]*x[2])+x[3]
The constraints
function can be used to show the estimated non-linear
parameter constraints of an estimated model object (lvmfit
or
multigroupfit
). Calling constrain
with no additional arguments
beyound x
will return a list of the functions and parameter names
defining the non-linear restrictions.
The gradient function can optionally be added as an attribute grad
to
the return value of the function defined by value
. In this case the
analytical derivatives will be calculated via the chain rule when evaluating
the corresponding score function of the log-likelihood. If the gradient
attribute is omitted the chain rule will be applied on a numeric
approximation of the gradient.
Value
A lvm
object.
Author(s)
Klaus K. Holst
See Also
regression
, intercept
,
covariance
Examples
##############################
### Non-linear parameter constraints 1
##############################
m <- lvm(y ~ f(x1,gamma)+f(x2,beta))
covariance(m) <- y ~ f(v)
d <- sim(m,100)
m1 <- m; constrain(m1,beta ~ v) <- function(x) x^2
## Define slope of x2 to be the square of the residual variance of y
## Estimate both restricted and unrestricted model
e <- estimate(m,d,control=list(method="NR"))
e1 <- estimate(m1,d)
p1 <- coef(e1)
p1 <- c(p1[1:2],p1[3]^2,p1[3])
## Likelihood of unrestricted model evaluated in MLE of restricted model
logLik(e,p1)
## Likelihood of restricted model (MLE)
logLik(e1)
##############################
### Non-linear regression
##############################
## Simulate data
m <- lvm(c(y1,y2)~f(x,0)+f(eta,1))
latent(m) <- ~eta
covariance(m,~y1+y2) <- "v"
intercept(m,~y1+y2) <- "mu"
covariance(m,~eta) <- "zeta"
intercept(m,~eta) <- 0
set.seed(1)
d <- sim(m,100,p=c(v=0.01,zeta=0.01))[,manifest(m)]
d <- transform(d,
y1=y1+2*pnorm(2*x),
y2=y2+2*pnorm(2*x))
## Specify model and estimate parameters
constrain(m, mu ~ x + alpha + nu + gamma) <- function(x) x[4]*pnorm(x[3]+x[1]*x[2])
## Reduce Ex.Timings
e <- estimate(m,d,control=list(trace=1,constrain=TRUE))
constraints(e,data=d)
## Plot model-fit
plot(y1~x,d,pch=16); points(y2~x,d,pch=16,col="gray")
x0 <- seq(-4,4,length.out=100)
lines(x0,coef(e)["nu"] + coef(e)["gamma"]*pnorm(coef(e)["alpha"]*x0))
##############################
### Multigroup model
##############################
### Define two models
m1 <- lvm(y ~ f(x,beta)+f(z,beta2))
m2 <- lvm(y ~ f(x,psi) + z)
### And simulate data from them
d1 <- sim(m1,500)
d2 <- sim(m2,500)
### Add 'non'-linear parameter constraint
constrain(m2,psi ~ beta2) <- function(x) x
## Add parameter beta2 to model 2, now beta2 exists in both models
parameter(m2) <- ~ beta2
ee <- estimate(list(m1,m2),list(d1,d2),control=list(method="NR"))
summary(ee)
m3 <- lvm(y ~ f(x,beta)+f(z,beta2))
m4 <- lvm(y ~ f(x,beta2) + z)
e2 <- estimate(list(m3,m4),list(d1,d2),control=list(method="NR"))
e2